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Abstract: This study deals with the axisymmetric stability of the interface between two incompressible 

Selfgravitating non-conducting fluids in the presence of an electric field. The pressure in the unperturbed state is not 

constant because the Selfgravitating force is a long-range force. The dispersion relation is derived and discussed. 

Some previous reported works may be obtained as limiting cases from the presented work with appropriate choices. 

The study under consideration has strong correlation with instabilities of sun spots and other physical phenomena. 
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INTRODUCTION 

 

In recent years, the selfgravitating instability of 

fluid models has a popular area of research. Stability of 

fluid layers or cylinders have gained considerable 

importance because of their applications in industries 

and biophysical laboratories, such as medical 

applications of electrohydrodynamic and 

Magnetohydrodynamic stabilities as injection of drugs 

inside the vessels, electric shock to treat the heart attack 

and effect of the magnetic resonance on blood flow. 

The theory of self-gravitating instability of a full fluid 

jet surrounded by gravitational medium of negligible 

inertia is due to Chandrasekhar and Fermi (1953). 

Chandrasekhar (1981) made a complete analysis for 

such a problem under the influence of the self-

gravitating force and surface tension separately or with 

other forces by using the normal mode analysis. In the 

recent decades, many advanced works concerning 

stability of different models influenced by several 

external forces have been documented by many 

researchers. Sudo et al. (2010) have developed the 

generator of the capillary magnetic fluid jet by 

conducting the experiments on magnetic fluid sloshing 

and found that the magnetic fluid droplets and capillary 

jet are formed by the generator. Hasan (2011) has 

studied the stability of an oscillating streaming fluid 

cylinder subject to the combined effect of the capillary, 

self-gravitating and electrodynamic forces in all modes 

of perturbation. Hasan (2012) has studied the instability 

of a full fluid cylinder surrounded by self-gravitating 

tenuous medium pervaded by transverse varying 

electric field under the combined effect of the capillary, 

self-gravitating and electric forces for all modes of 

perturbation. Ellingsen and Brevik (2012) have 

discussed the behaviour of a dielectric fluid-fluid 

interface in the presence of a strong electric field from a 

point charge and line charge, respectively, both 

statically and, in the latter case, dynamically. Chand 

(2012a) has investigated the rotation in a magnetized 

ferrofluid with internal angular momentum, heated and 

soluted from below saturating a porous medium and 

subjected to a transverse uniform magnetic field. Chand 

(2012b) has discussed the triple-diffusive convection in 

a micropolar ferromagnetic fluid layer heated and 

soluted from below and considered in the presence of a 

transverse uniform magnetic field. Yin et al. (2013) 

have studied a linear stability analysis for thermal 

convection in a two-layer system composed of a fluid 

layer overlying a porous medium saturated with an 

oldroyd-B fluid heated from below.Ezzat et al. (2015) 

have studied some mathematical models of generalized 

magneto-thermo-viscoelasticity for isotropic media by 

using Laplace-transform technique. Balsara et al. 

(2016) have discussed the two fluids interact 

collectively with the full set of Maxwell's equations and 

obtained a solution strategy for that coupled system of 

equation. Hasan (2016a) has studied the linear stability 

of self-gravitating compound dielectric immiscible jets 

under the influence of an axial electric field. Hasan 

(2016b) has discussed the self-gravitating instability of 

a rotating fluid layer sandwiched between semi-infinite  



 

 

Res. J. Appl. Sci. Eng. Technol., 14(10): 399-407, 2017 

 

400 

 
 

Fig. 1: Sketch for gravitational dielectric fluid cylinder 

 

layers of a fluid with a different density. Hasan (2017) 
has discussed the stability of the a dielectric 
selfgravitating streaming fluid cylinder. 

The purpose of the present work is studying the 
stability of the interface between two incompressible 
self-gravitating non-conducting fluids in the presence of 
an electric field. In the basic state, both fluids are at rest 
and the interface is the cylindrical surface. We have 
considered the linearized equations, derived the 
dispersion relation on utilizing normal modes and then 
analyzed it. The study under consideration has strong 
correlation with instabilities of sunspots and other 
physical phenomena. 
 

FORMULATION OF THE PROBLEM AND 

BASIC STATE 
 

We consider a gravitational dielectric fluid cylinder 
of density ρ

i
 (radius Ro) with dielectric constant ε

i 
and 

self-gravitating potential V
i
. The model is assumed to 

be streaming uniformly with velocities �o = (0, W, U). 

The cylinder is embedded into a gravitational, dielectric 
different fluid (of density ρ

e
) with dielectric constant ε

e 

and self-gravitating potential V
e
. The fluids are 

penetrated by the longitudinal electric fields ��
�= 

(0,0,βEo) and ��
�= (0,0,αEo)where Eo is the electric field 

intensity in the fluid whileα and � are parameters. Both 

of��
� and ��

� are taken along the cylindrical coordinates 

(r, φ, z) with the z - axis  coinciding with the axis of the 
cylinder as shown in Fig. 1. The fluids are assumed to 
be incompressible, inviscid and homogenous. Each of 
these fluids is subjected to the self-gravitating and 
electrodynamic forces. We assume in the basic state 

that there are no surface charges at the fluid-fluid 
interface (this is because the electric field is continuous 
across the interface) and consequently the surface 
charge density will be considered to be zero during the 
perturbation. No volume charges are assumed to be 
present in the bulk of the fluids in general. 

The required equations for studying such kind of 

problems are the combination of ordinary fluid dynamic 

equations with those of Newtonian self-gravitating and 

electrodynamic Maxwell’s equations. They are given as 

follows: 

 

, ,, ,i e i ei e i eu u
t

ρ
∂ + ⋅∇ = −∇∏ ∂                              

(1) 

 
,

0 2
i e

u∇ ⋅ =
                 (2) 

 
2 , ,4 3i e i eV Gπ ρ∇ =

                (3) 

 

( ), ,, 0 , 0 4 , 5
i e i ei e E Eε∇ ⋅ = ∇ ∧ =

                (4) 

 
, ,

0 , 0 4 , 5
i e i e

E E∇ ⋅ = ∇ ∧ =
                              (5) 

 

( )( ) ,, , , , , 2 6
i ei e i e i e i e i eP V E Eρ ε∏ = + + ⋅

              (6)
 

 

Here ��
�,�

 are the intensity of the electric field, P
i,e 

are the kinetic pressure of the fluid, ��,� are the velocity 

vectors, G is the gravitational constant and (П
i,e

– 

ρ
i,e

V
i,e

) are the total hydro-electrodynamic pressures 
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which are the sum of the kinetic and electrodynamic 

pressures. 

The unperturbed state is studied, the differential 
equations are solved and the constants of integrations 
are identified by utilizing the continuity conditions and 
the balance of the total electrodynamic pressure across 
the unperturbed interface r = Ro. The variables in the 
unperturbed state are given by: 
 

( ) ( )0, 0, , 0, 0, , 7
i e

o oo oE E E Eβ α= =
                     (7) 

 

( )2 2 1
2 ln 8

2

e e e i

o o

o

r
V G r GR

R
π ρ π ρ ρ

  
= + − −  

     (8) 
 

2i i

o
V G rπ ρ=

                (9)
 

 

( )
2

2 2 21
2 ln 10

2 2

e
e e e e i

o o o

o

r
P G r R E

R

α ε
π ρ ρ ρ ρ

   
= − + − − +   

    
                                                                                   (10) 
 

( )
2

2 2 2 2

2

i
i i i e

o o o o
P G r R R E

β ε
π ρ ρ ρ = − − + + 

  (11)

 

 
where, from now on, the subscript o characterizes the 
variables in the unperturbed state. 

 

LINEARIZATION 
 

For small wave disturbances acting along the fluid-
fluid interface at r = Ropropagating in the positive z-
direction   and    based    on   the    linear     perturbation  

technique, every variable quantity Q(r, φ, z ; t)may be 
expressed as its unperturbed value plus a fluctuation 
part, viz.,: 

 

( ) ( ) ( ) ( )1
, , ; , , 12

o
Q r z t Q r t Q r zϕ δ ϕ= +

       (12)
 

 

where, Q(r, φ, z ; t)stands for each �
i,e

, P
i,e

, �
i,e

, V
i,e 

and 

the radial distance of the fluid cylinder with the 
subscript 1 indicates the perturbed quantities. The 
amplitude δ(t)of the perturbation at time t is described 
by: 
 

( ) t

ot e
σδ δ=

              (13) 
 
where δo  is the initial  (δ = δo at t = 0) amplitude and σ 
is the growth rate, asσ (=iω) is imaginary then (ω/2π)is 
the frequency of the oscillation. The fluid-fluid 
perturbed interface radial distance is assumed to be: 
 

1or R R= +
                           (14)

 

 

With: 

 
[ ]

1

t ikz

oR e σδ +=
              (15) 

 

where, k (any real number) is the longitudinal 

wavenumber . R1  is the elevation of the surface wave 

measured from the unperturbed position. The perturbed 

equations are solved and the required boundary 

conditions are applied, we finally obtained the 

dispersion relation: 

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

22

2
2

1
4 1 1 (2 1)

2

i

m m

m m m m

m m

o m m

i i

o m m m m

xI x K x
imW ikU

I x K x I x K x

G I x K x

E I x K x

R I x K x I x K x

ρ
σ

ρ

π ρ ρ ρ

β αε

ε ρ ε

′ ′
+ + =

′ ′−  

  − − − + 
 

− −
′ ′−   

                                      (16) 

 

where, ρ(= ρ
e
/ρ

i
) is the densities ratio of the self-gravitating dielectric fluids and ε(= ε

e
/ε

i
) is the ratio of the dielectric 

constants of fluids. 

 

GENERAL DISCUSSIONS AND LIMITING CASES 

 

The relation (16) is the dispersion relation of a dielectric fluid cylinder ambient with a different dielectric fluid; 

each is acting upon the self-gravitating, inertia and electrodynamic forces. It relates the growth rate σ, or rather the 

oscillation frequencyω , the modified Bessel functions I0(x) and K0(x) and their derivatives, the densities ratio ρ(= 

ρ
e
/ρ

i
), the dimensionless longitudinal wave number x(=kRo) and with the fundamental quantity (4πρ

i
 G)

-1/2
 as a unit 

of time. By means of the relation (16) the ordinary stability, marginally stability and instabilities of the present 

system could be identified. The marginal stability may be obtained by just setting σ = 0in equation (16) that at which 

transition from oscillation to instabilities occur. This happens directly e.g., as Eo = 0 if  ρ = 1, i.e., we have an 

homogenous medium of uniform density ρ
i
 = ρ

e 
and this is physically plausible.  
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The most logical and simultaneously surprising point that we have to stress on it and as a duty to find the 

physical interpretation for it is the following. One has a feeling that is due to the fact that we assumed there are no 

volume charges present in the electric field: no surface charges are present at the interfaces in both unperturbed and 

perturbed states.  

Since the problem under consideration, for some extent, is more general, other recent reported results may be 

recovered as limiting cases with appropriate choices. 

 

• Some results may be obtained as limiting case if we assume that ρ
e
 = 0, W = 0, U = 0 and m = 0 in the 

compatibility condition: 

 

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

0 02

0 0

0 0

22

0 0

2

0 0 0 0

1
4

2

i

o

i

o

xI x K x
G I x K x

I x K x

E I x K x

R I x K x I x K x

σ πρ

β αε

ρ ε

′ ′   = − ′    

−
− 

′ ′−                              (17) 

 

• If we pose that ρ
e
 = 0 and ��

�,�
= 0, the dispersion relation (16) degenerates to: 

 

( )
( )

( ) ( )12

0 0

0

1
4 18

2

i
xI x

G I x K x
I x

σ π ρ
   = −   

                                                                                                         (18) 

 

This is exactly the same as the dispersion relation derived by Chandrasekhar and Fermi (1953), on utilizing the 

energy method, in examining and studying the dynamical behaviour of the spiral arm of galaxy. 

 

STABILITY DISCUSSION 

 

Selfgravitating instability: The axisymmetric instability and oscillations of a purely self-gravitating dielectric full 

fluid cylinder embedded in a dielectric self-gravitating medium of negligible inertia may be determined by 

discussing the general relation (18) see Chandrasekhar (1981). The analytical and numerical analysis of that relation 

reveal to the following conclusions. The self-gravitating fluid cylinder is stable forx ≥ 1.0667 and unstable if  x< 

1.0667 where the equality is corresponding to the sausage marginal stability. For more investigations and details 

about the instability of such a case we may refer to the pioneering works in refs. Chandrasekhar and Fermi (1953) 

and Chandrasekhar (1981). 

In order to investigate the present general case of a fluid cylinder embedded in a different fluid we have to study 

first the behaviour of the modified Bessel’s functions. By an appeal to the recurrence relations: 

 

( ) ( ) ( ) ( )0 1 0 1, 19I x I x K x K x′ ′= = −
                                                                                                             (19)

 

 

And for x ≠ 0 that I0(x) is monotonic increasing while K0(x) is monotonic decreasing, we may see that: 

 

( ) ( )0 00 , 0 20I x K x′ ′> <
                                                                                                                           (20) 

 

( ) ( )( ) ( ) ( )( )0 0 0 0
0 , 0 21xI x I x xK x K x′ ′> <

                                                                                             
(21) 

 

Using these inequalities we find, as x ≠ 0, that the fraction: 

 

( ) ( )
( ) ( ) ( ) ( ) ( )

0 0

0 0 0 0

e i

xI x K x

I x K x I x K xρ ρ

′ ′

 ′ ′−                                                                                                      (22) 

 

Is positive definite and never changing sign.  

In view of the foregoing results, the determination of the sign of σ
2
in the dispersion relation (16) is dependent 

on the sign of: 
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( ) ( ) ( ) ( )0 0

1
1 1 23

2

e i e i I x K xρ ρ ρ ρ − − −                                                                                                       (23) 
 

However, it is well known, for 0x ≠ , that: 

 

( ) ( )( ) ( ) ( )( )0 0 0 0

1 1
or 24

2 2
I x K x I x K x> <

                                       (24)

 

 
Based on the values of  x. 

Therefore the identification of the sign of (σ
2
/4πρ

i
 G) is dependent on the density ratio ρ

e
/ρ

i
 of the gravitational 

dielectric fluids. If we involve ourselves in investigating this general case, we have the following different cases: 
 

i. We assume that ρ
e
 = ρ

i 
i.e., we have a dielectric homogenous self-gravitating medium. In such a case, Eq. (16) 

gives (σ
2
/4π ρ

i
 G)

1/2
  for all 0x ≥ . Therefore, we predict that the system is marginally stable for all (short and 

long) wavelengths and this is intuitively clear according to Newtonian gravitational principle. 
ii. Suppose that ρ

e
<ρ

i
 i.e., the dielectric gravitational fluid cylinder is more dense than density of the surrounding 

dielectric fluid. In such a case the quantity σ/(4πρ
i
G)

1/2
  is imaginary as the restriction: 

 

( ) ( ) ( )( ) ( )0 0 2 25i e iI x K xρ ρ ρ− ≥
                                                                                                             (25) 

 

Is satisfied, taking into account that (ρ
i
 = ρ

e
) is positive definite. Therefore we deduce, in such a case in which 

(ρ
i
>ρ

e
), that the self-gravitating system is stable if the restriction (25) is satisfied (where the equality 

corresponds to the neutral stability) and vice versa. 
 

(iii) The case as (ρ
e
 = ρ

i
) where the density of the external gravitational dielectric fluid is more dense than the 

dielectric fluid cylinder, is the most dangerous case because there in no any stable state in such case. Using (20) 
together with: 

 

( ) 0 26i eρ ρ− <
                                                                                                                            (26)

 

 
We get: 
  

( ) ( ) ( )( ) ( )0 0
2 0 27i e iI x K xρ ρ ρ − − <                                                                                                           (27) 

  
For the criterion (16) one may easily prove that σ/(4π ρ

i
 G)

1/2
is real for each non-zero value of x. This means 

that the system will be unstable for all (short and long) wavelengths in axisymmetric mode of perturbation m = 0. 

Indeed, the two cases (i) as ρ
e
 = ρ

i
 and (ii) as ρ

e
<ρ

i
 of the discussing the relation (16) gave plausible results, but 

the results of the last case (iii) as ρ
e
>ρ

i
 that the system is unstable for all wavelengths are surprising and very 

strange. That is may be because the essential prerogative of the self-gravitating instability studies is to understand 
the dynamical behaviour of the spiral arm of galaxy (Chandrasekhar and Fermi, 1953). However this may be logic 
as we will see from the following physical interpretation. The spiral arm of the galaxy may be idealized as an 
infinite cylindrical column and assuming as here we consider it is not stationary in the unperturbed state. 

 
(i)  If the density of the matter of the galaxy’s arm is equal to that of the surrounding matter, it is neutral stable for 

all wavelengths.  
(ii) If the medium in which the arm exists is more dense than the matter of the galaxy’s arm, then it will be unstable 

or stable according to the restriction: 
 

( ) ( ) ( )( )0 02 0 28i e I x K xρ ρ− <
                                                                                                                         (28) 

 
And this is a logic situation. 

(iii) If the matter in which the streaming galaxy’s arm has been disturbed is more dense than the galaxy’s arm 

density. This means that the galaxy is going through a matter more dense than the density of its matter.  
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Of course, in this case the arm will be purely gravitational unstable for all perturbed wavelengths and will broken up 

and destroyed. In particular the latter will be very quick and faster in the case in which the arm is streaming in the 

initial state than the stationary one and this is our present situation. This can be easily thought and realized in the 

province of astrophysics and planetary domains which is a logical and true situation, nowadays. 

 

Electrodynamic stability: As we neglect streaming and the influence of self-gravitating force, the electrodynamic 

stability criterion is given from (16) in the form: 

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

2
0 02

2

0 0 0 0

2

0 0

0 0 0 0

i

o

i

o

xI x K xE

R I x K x I x K x

I x K x

I x K x I x K x

ε
σ

ρ ρ

β αε
ε

 ′ ′ 
= −     ′ ′−     

 −
 

 ′ ′−                                                  (29) 

 

The determination of the sign of σ
2
 in the dispersion relation (29) is dependent on the sign of: 

 

( ) ( ) ( )
( ) ( ) ( ) ( )

2

0 0

0 0 0 0

I x K x

I x K x I x K x

β αε

ε

 −
 

 ′ ′−                                                                                                            (30) 

 

Therefore, the identification of the sign of σ
2
 is dependent on the sign of the term (I0(x) K0(x)). In view of the 

identities (19), (20), (22) and (24), it is found that the quantity (30) must be positive for all x ≠ 0 values. 

Investigations and analysis of the relation (29) reveal that the influence of the interior and exterior electric fields 

have stabilizing effect for all values of x(x≠0). 

 

Electrogravitational stability: In such a case of electro gravitational stability, the system is acted by the combined 

effect of self-gravitating and electrodynamic forces. Its dispersion relation is given by Eq. (16). As we have seen in 

the foregoing sub-cases that the electric force and the self-gravitating force are stabilizing or destabilizing according 

to restrictions. So it is difficult to identify the unstable domains analytically. However, this can be carried out upon 

discussing the general relation (16) numerically. 

 

NUMERICAL DISCUSSION 
 

In order to determine the combined effect of the gravitational and electrodynamical forces, the relation (16) has 

been formulated in dimensionless form: 

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

2
0 0

0 0

0 0 0 0

2

0 0

1

0 0 0 0

1
1 1 (2 1)

4 2i

xI x K x
I x K x

G I x K x I x K x

I x K x
M

I x K x I x K x

σ
ρ ρ ρ

π ρ ρ

β αε

ε

′ ′   = − − − + ′ ′−    

−
− 

′ ′−                   (31) 

 

With 

 
2

1 , 2 32io
s oi

s

E G
M E R

E

π
ρ

ε
 

= = 
                                                                                                          

(32) 

 

The relation (31) inserted in the computer and computed. This has been done for several values of ρ and ε. The 

numerical data for different values of  M1, the instability domains which are associated with σ/(4πρ
i
 G)

1/2
and those 

of stability corresponding to ω/(4π ρ
i
 G)

1/2
are collected and tabulated and presented graphically (Fig. 2 to 12). There 

are many features and properties of interest in this numerical analysis as we see in the following:  

 

• For ρ  = 0.2 and ε = 0.2  corresponding to M1 = 0.1, 0.3, 0.5, 0.7 AND 1.0 it is found that the 

electrogravitational unstable domains are 0 < x < 0.568001, 0 < x < 0.380499. 0 < x < 0.27072,0 < x < 0.26335
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Fig. 2: Electrogravitational stable and unstable domains for ρ 

= 0.2 and ε = 0.2  
 

 

 
 
Fig. 3: Electrogravitational stable and unstable domains for ρ 

= 0.2 and ε = 0.8    
 

 

 
 

Fig. 4: Electrogravitational stable and unstable domains for  ρ 

= 0.4 and ε = 0.2  
 

 

and 0 < x < 0.1545, the neighboring stable domains 

are  0.568001 ≤ x <∞, 0.380499 ≤ x < ∞, 0.27072  

 
 

Fig. 5: Electrogravitational stable and unstable domains for  ρ 
= 0.4 and ε = 0.8  

 
 

 
 
Fig. 6: Electrogravitational stable and unstable domains for  ρ 

= 0.4 and ε = 1.2   
 

 

 
 

Fig. 7: Electrogravitational stable domains for  ρ = 0.5 and ε 
= 0.2  

 
 
≤ x < ∞, 0.26335 ≤ x < ∞ and0.1545 ≤ x < ∞, 
where the equalities correspond to the marginal 
stability states (Fig. 2). 
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Fig. 8: Electrogravitational stable domains for ρ = 0.5 and ε = 

1.2   

 

 
 
Fig. 9: Electrogravitational stable domains for  ρ = 0.8 and ε 

= 0.2  
 

 

 
 

Fig. 10: Electrogravitational stable domains for ρ = 0.8 and ε 

= 1.2 
 

• For ρ = 0.2and ε = 0.8  corresponding to M1 = 0.1, 

0.3, 0.5, 0.7 and 1.0  it is found that the 

electrogravitational unstable domains are 0 < x < 

0.670116, 0 < x < 0.669265, 0 < x < 0.66783, 0 < x 

< 0.66665, and 0 < x < 0.65347, the neighboring 

stable domains are 0.670116 ≤ x < ∞, 0.669265 ≤ x 

<∞, 0.66783 ≤ x <∞, 0.66665 ≤ x < ∞ and0.65347 

≤ x < ∞, where the equalities correspond to the 

marginal stability states (Fig. 3). 

• For ρ = 0.4and ε = 0.2  corresponding to M1 = 0.1, 

0.3, 0.5, 0.7 and 1.0 it is found that the 

electrogravitational unstable domains are 0 < x < 

0.288514, 0 < x < 0.288696, 0 < x <0.266514, 0 < 

x< 0.24406, 0 < x < 0.22176 and 0 < x < 0.20432, 

the neighboring stable domains are 0.288696 ≤ x 

<∞, 0.266514 ≤ x < ∞, 0.24406 ≤ x<∞,0.22176 ≤ x 

< ∞ and0.20432 ≤ x <∞, where the equalities 

correspond to the marginal stability states (Fig. 4). 

• Forρ = 0.4and ε = 0.8 corresponding to M1 = 0.1, 

0.3, 0.5, 0.7 and 1.0 it is found that the 

electrogravitational unstable domains  

are0 < x < 0.29784, 0 < x < 0.227352, 0 < x < 

0.26447, 0 < x <0.24125, and 0 < x < 0.22145, the 

neighboring stable domains are 0.29784 ≤ x < 

∞,0.27352 ≤ x <∞, 0.26447 ≤ x <∞, 0.24125 ≤ x 

<∞ and0.22145 ≤ x < ∞, where the equalities 

correspond to the marginal stability states (Fig. 5). 

• For ρ = 0.4and ε = 1.2  corresponding to M1 = 0.1, 

0.3, 0.5, 0.7 and 1.0 it is found that the 

electrogravitational unstable domains are 0 <x < 

0.37097,  0 < x < 0.36042, 0 <x< 0.34231, 0 < x < 

0.3245and 0 <x < 0.31123, the neighboring stable 

domains are  0.37097≤ x<∞, 0.36042 ≤ x <∞, 

0.34231 ≤ x <∞, 0.3245 ≤ x <∞ and0.31123 ≤ x < 

∞, where the equalities correspond to the marginal 

stability states (Fig. 6). 

• Forρ 0.5 andε = 0.2  corresponding to M1  = 0.1, 

0.3, 0.5, 0.7 and 1.0 it is found that the 

electrogravitational fluid cylinder is completely 

stable not only for short wavelengths but also for 

very long wavelengths (Fig. 7). 

• For ρ = 0.5and ε = 1.2  corresponding to M1 = 0.1, 

0.3, 0.5, 0.7 and 1.0 it is found that the 

electrogravitational fluid cylinder is completely 

stable not only for short wavelengths but also for 

very long wavelengths (Fig. 8). 

• For ρ = 0.8andε = 0.2 corresponding to M1 = 0.1, 

0.3, 0.5, 0.7 and 1.0 it is found that the 

electrogravitational fluid cylinder is completely 

stable not only for short wavelengths but also for 

very long wavelengths (Fig. 9). 

• For ρ = 0.8and ε = 1.2 corresponding to M1 = 0.1, 

0.3, 0.5, 0.7 and 1.0 it is found that the 

electrogravitational fluid cylinder is completely 

stable not only for short wavelengths but also for 

very long wavelengths (Fig. 10). 
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Fig. 11: Electrogravitational stable domains for  ρ = 1.2 and ε 
= 0.2   

 

 

 

Fig. 12: Electrogravitational stable domains for ρ = 1.2 and ε 
= 0.8  

 

• For ρ = 1.2and ε = 0.2 corresponding to M1 = 0.1, 
0.3, 0.5, 0.7 and 1.0 it is found that the 
electrogravitational fluid cylinder is completely 
stable not only for short wavelengths but also for 
very long wavelengths (Fig. 11). 

• For ρ = 1.2and ε = 0.8 corresponding to M1 = 0.1, 
0.3, 0.5, 0.7 and 1.0 it is found that the 
electrogravitational fluid cylinder is completely 
stable not only for short wavelengths but also for 
very long wavelengths (Fig. 12). 

 
CONCLUSION 

 
From the numerical discussions we may deduce the 

following.  
For the same values of ρ(=ρ

e
/ρ

i
)ρ = 0.5say,it is 

found that the unstable domains are increasing with 
increasing M1 values. This means that the influence of 
the electric forces have destabilizing effect for all short 
and long wavelengths. 

However, as (ρ > 0.5), it is found that the model 
becomes completely stable not only for short 
wavelengths but also for very long wavelengths. This 
means that the density ratio  (ρ

e
/ ρ

i
) has a stabilizing 

effect. Also the ε  ratio ε (= ε
e
 / ε

i
) has a stabilizing 

influence. 
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