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Abstract: In order to improve the quality of overlapping detection, Rough K-Means (RKM) was proposed as the 
first kind of rough clustering algorithm. It was found that this recent RKM algorithm known as π RKM is the most 
powerful and effective version in which there is an increase in the number of objects that are correctly clustered and 
a decrease in the number objects that are incorrectly clustered compared to the issues which the previous RKM had. 
However, there are challenges associated with the clustering process which uses RKM as a result of the difficulty in 
establishing a standard measure for reducing the effect of local outlier objects on a means function. Therefore, the 
RKM algorithm is refined in this study to address the problem. Through this study we contribute two components. 
Firstly, we intend to employ the use of Local Outlier Factor (LOF) technique for the discrimination of a number of 
objects as outliers and secondly, we propose to reduce the effect of local outliers on means function by using a 
weight. The result of the experiments which were performed through the use of synthetic and real life datasets prove 
that there is an improvement in the quality of overlapping detection when compared to recent versions. 
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INTRODUCTION 

 
K-Means which is also regarded as Hard K-Means 

is a clustering algorithm that is simple and unsupervised 
(Hartigan and Wong, 1979). The purpose is to group 
similar objects into a given cluster as well as different 
objects into an appropriate cluster by partitioning the 
natural structure of data objects. K-Means is regarded 
in the literature as of the frequently used clustering 
algorithms which for over 50 years has been in use 
(Jain, 2010; Xiao and Yu, 2012) several domains of 
application (Peters et al., 2013). However, it was found 
that this popular algorithm is weak because of its 
inability to differentiate objects that are vague or 
ambiguous. So, in order to address the shortcomings of 
this algorithm soft clustering algorithms like Fuzzy C-
Means (Bezdek and Harris, 1978) and its derivatives 
such as Possibilistic C-Means (PCM) (Krishnapuram 
and Keller, 1993).  

One of the major aims of clustering algorithms is to 
detect objects that are overlapping. Rough clustering is 
considered as a unique approach that adopts the 
interpretation of rough set properties in partitioning 
algorithms. The first algorithm to adopt this approach is 
the Rough K-Means (RKM) (Lingras and West, 2004). 
The aim of this algorithm is to distinguish objects that 

overlap between positive clusters based on the process 
of Hard K-Means. As a solution for each cluster, the 
lower and upper approximation is initiated (a brief 
description of each approximate space is provides in 
related work). 

Some of the improved versions are introduced to 
achieve satisfactory RKM clustering results such as that 
in Peters (2006, 2012) which minimize the effect of the 
objects in the upper regions against the objects in the 
lower region. Recently, Peters (2014) further refined 
the RKM algorithm which was introduced as the 
Laplace’s Principle Indifference as a method of 
improving the overlapping detection quality. A rough 
classifier (Peters, 2015a) was introduced as a new 
validity index and used to evaluate the experiments 
results of RKM algorithm. The experiments results 
found that, the number of correctly clustered objects 
has been increased and the number of incorrectly 
clustered objects has been decreased in comparison to 
previous RKM and classical K-Means (Peters, 2015b). 
However, the currently available algorithm has a 
weakness in minimizing the effect of local outlier 
objects on the means function. In this study, we 
contribute in refining the RKM clustering algorithm by 
handling the problem mentioned above. A weight (w) is 
proposed to minimize the effect of outlier objects on the  
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Fig. 1: Definitions of approximation space 
 
means function. A method called Local Outlier Factor 
(LOF) (Breunig et al., 2000) is used as a measure to 
distinguish the number of outlier objects. The 
effectiveness of the proposed weight is demonstrated on 
synthetic and real datasets from Iris Plant and Vowel 
dataset. Results indicated that the number of the 
correctly clusters increased. In contrast, the number of 
incorrectly clusters is decreased. 
 

LITERATURE REVIEW 
 

Rough clustering which was first introduced in 
Lingras and West (2004) is derived from the interval 
interpretation of rough sets (Pawlak, 1982) in contrast 
to clustering algorithm. For instance, the K-Means 
algorithm is modified by incorporating the concepts of 
rough approximation space. Generally, approximation 
is a fundamental construct that distinguishes the rough 
set from other approaches. The key concept of 
approximation (rough) is the isolation of the 
indiscernible form objects into lower and upper 
approximation. The lower contains the objects that only 
belong to one cluster; and the upper contains objects 

that belong to more than one cluster. Figure 1 depicts a 
definition of approximation in rough concept. 

Assuming U (called Universe) is a certain 
nonempty set of objects X ={x1, x2, …, xn}∈R, where R 
is an equivalence relation of the U and the pair (U, R) 
called the approximation space. Hence, U divides the 
space into the three regions as following: 
 
• The lower approximation region is �∨(X), (also 

called the positive region Pos(X) = �∨(X)). 
• The upper approximation region R^

(X), (also called 
the negative region Neg(X) =R

^(X)). 
• The boundary region Bnd(X)= R

^(X) - �∨(X). The 
boundary region is generally not spatial, where it is 
just for gathering ambiguous objects not related to 
any positive region, (Bnd(X) = Neg(X) - Pos (X). 

 
In rough clustering approach, all the objects in the 

positive region belong to one cluster, while all objects 
in the negative regions; possibly belong to two or more 
clusters (Peters, 2006). The basic properties can be 
outlined as follows: 
 
• X ∈�∨(X), for �∨(X)⊂R

^(X) & X ∉ Bnd(X), 
• If X ∈ �∨(X), then also X ∈ R

^(X),  
• If X ∉ �∨(X), then X ∈ Bnd(X), 
 

According to some perspectives, these basic 
properties are not necessarily independent or complete 
(Mitra et al., 2006). However, enumerating them will 
be helpful in understanding how the rough set is 
adapted into Hard K-Means algorithm (Lingras and 
Peters, 2011). An example of three rough clusters (e.g., 
RKM) is shown in Fig. 2. 

Therefore, the essential effort of RKM algorithm 
includes the calculation of the means of “Centroids” 
and the assigning of the object to the cluster

 

 
 
Fig. 2: Three rough clusters (e.g., RKM) 
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Fig. 3: Assigning part of the algorithm 
 
region/regions based on three input factors such as 
follows: Firstly, estimation of the number of clusters k 
(finding the value of k is based on a trial or error 
process). Secondly, two weights are set as parameters 
(w�∨(X), wR

^(X)) (which represent the linear 
combination of lower and upper parameters. Thirdly, 
determination of the size of the boundaries by using a 
threshold (T). The objects are then assigned either to the 
lower or the boundary regions based on distance from 
the positive cluster centroids. A Laplace’s (Laplace, 
1998) distance is used as a measure for assigning the 
objects. At this point, the numbers of objects in the 
boundary region would be increased by increasing the 
value of rough clustering threshold. 

Recently, several RKM versions have been 
proposed (Peters, 2006, 2014, 2015b). In fact, most 
studies focus on improving the algorithm to be more 
robust and effective based on the input factors 
mentioned in the previous paragraph. Some of the 
significantly improved versions of RKM have been 
introduced. First, Peters (2006) made some refinements. 
His studies recommend that the weight of an object in 
lower region w�∨(X) should be higher than the weight 
of the object in the upper region (in this case boundary 
region Bnd(X)). The alternative proposed set w�∨(X) = 
0.7, where wR

^(X) =1- w�∨(X) is used for calculating 
the means (Mk) of the cluster. Respectively, the 
improved means function is presented in Eq. (1) as 
follows: 
 

Mk = ���∨(	) ∑ �
�∨(��)

���� � + 

���^(	) ∑ �
�^(�)

���� �   

[For R∨(Xn)1∅; with �R∨(X) + ��^(X) =1]      (1) 
 

He too applied Relative distance for assigning part 
instead of the Laplace’s distance method proposed in 
the initial version. An example of using the relative 
distance measure is depicted in the Fig. 3. Assumes Mi 
and Mj are two means of clusters. Hence, the minimum 
distance (dmin) between the object X and the closest 
means Mi. Meanwhile, dj is a distance between the 
object X and other means Mj. In this case: 
 

                 (2) 

The relative distance Eq. (3) is used in determining 
if the object is overlapped or non-overlapped and is 
computed as follows: 
 

 

                         (3) 

 
 Lately, an important refinement of RKM 

algorithm was presented (Peters and Lingras, 2014; 
Peters, 2014). Moreover, a method called Laplace’s 
Principle of Indifference (Laplace, 1998) is applied to 
determine the weights in the mean function of RKM 
algorithm. The existing algorithm version called 
πRKM. The main concern is replacing the variant 
weights of RKM by neglecting the number of objects in 
lower and upper regions.  

To understand Laplace’s applied method in RKM, 
Fig. 2 illustrates this. The three clusters (Cluster1, 
Cluster2 and Cluster3) distribute the data objects into 7 
possible regions R1, R2, R3, R4, R5, R6 and R7. Hence, 
R1, R2 and R3 represent the Positive regions, where the 
objects are not overlapping with other regions. In this 
case, ��∨(X) = ��∨(X) = ��∨(X) =1, where the effect of 
these objects on region R

^(X) = 1/1 = 1. In the other 
case, the objects in R4, R5 and R6 belong to two 
clusters, where the effect of these objects on region is 
represented by R

^(X) = ½ = 0.5. In contrast, the same 
applies to R7, where each object belongs to three 
clusters, where the effect of these objects on region is 
denoted by R

^(X) = 1/3 = 0.3. As a consequence, the 
effect of the objects would decrease, when the number 
of belongs regions increased. Formally, the means 
function is extended as below: 
 

                   (4) 

 
It should be noted that, besides the original RKM 

improved version, there are other extensions of RKM 
algorithm that attempt to improve the quality of an 
algorithm by studying the optimization parameters. 
This include studies such as evolutionary rough 
clustering (Lingras, 2009; Mitra, 2004; Peters et al., 
2008) where the initial parameters are optimized in 
relation to cluster validity indexes. The hybrid 
clustering which combines rough with fuzzy or 
possibilistic approaches have been proposed by 
researches like Mitra et al. (2006), Maji and Pal (2008) 
and Maji and Paul (2012). In the other approach an 
interesting issue is related to the detection of outliers 
through RKM using entropy computation to measure 
similarity among cluster (Setyohadi et al., 2014). For 
recent surveys on rough clustering and the relationship 
into further  soft  clustering approaches refer to Peters ( , )d d X Mi
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et al. (2013). The focus of this study is on existing 
(πRKM) (Peters and Lingras, 2014; Peters, 2014), 
where RKM algorithm is upgraded to become a more 
robust version. Hence, the existing version of RKM 
algorithm can be found in a recent publication (Peters, 
2015b). 
 

PROPOSED METHOD 
 

The RKM process is much closer to the statistical 
K-Means (Peters et al., 2013) and the C-Means 
algorithm. The aim is to discriminate a number of 
overlapping objects in between positive clusters by 
finding accurate centroids. K-Means algorithm is more 
sensitive to outliers (Jain et al., 2000; Velmurugan and 
Santhanam, 2010). An outlier is an “observation that 
deviates so much from other observations as to arouse 
suspicion that it was generated by a different 
mechanism” (Hawkins, 1980). In this study, we propose 
a weight to minimize the effect of outlier objects on 
means function of RKM algorithm as our contribution. 
In particular, we separate a number of objects (outliers) 
using  LOF  method which was introduced by Breunig 
et al. (2000) and then minimize its effect, where it 
appears in the positive region of each cluster. 
 
Local Outlier Factor (LOF): LOF is a ratio which 
estimates reachability density of the area around the 
object to the local densities of its neighbors. The 
successful method has widely been used to detect 
outliers and it doesn’t suffer local density problem. 
Additionally, the method is a single-link which is 
commonly used with a hierarchical clustering algorithm 
known as OPTICS (Ordering Points to Identify the 
Clustering Structure) (Breunig et al., 1999). OPTICS is 
an extension of DBScan (Density-Based Spatial 
clustering of applications with noise) used in 
hierarchical clustering (Ankerst et al., 1999). The 
advantage of using OPTICS is it is less sensitive for use 
in parameter setting and finding the clustering structure. 
The Local Outlier Factor (LOF) requires observing 
some definition as proposed by Breunig et al. (2000). 
The definition consists of three steps as follows: 
 
Step 1: Determine the neighborhood: LOF defines 
the neighborhood border distance d(X, kth) from each X 
object to its kth nearest neighbor by using similarity 
distance. A simple distance measure like Euclidean 
distance can often be used to reflect the difference 
between two objects. However, other distance metrics 
such as Manhattan distance or Chebyshev distance can 
also be used. For instance, suppose there are three 
objects (x1, x2 and x3). The x2 is 1 distance unit from 
x1and x3 is 2 distance units from x1. Therefore, x2 is the 
nearest neighbor to x1 and x3 is the second nearest 
Neighbor to x1. The formula for calculating the distance 
of the kth nearest neighbor to object (x1) is described as 
follows: 

 
                     (a)                              (b) 
 
Fig. 4: Example of LOF definition 
 

       (5) 
 
Step 2: Determine the local reachability distance: 
Reachability Distance can be determined based on two 
parameters:  
 
• A parameter MinPts specifying a minimum number 

of objects  
• A parameter radius (ɛ) specifies a volume 
 

For example, suppose there are 5 nearest neighbors 
(MinPts = 5) of object X (Fig. 4a) exceed the radius (ɛ 

= 0.3) threshold (called core Distance). Moreover, we 
call x1 Core-Distance Object if all detected neighbors 
are too close. In the other case, an object x2 (Fig. 4b) is 
called reachability Object, where the 2 neighbors 
exceed the radius threshold. 

In this case, the reachability distance of object X 
with respect to kth objects (X’) is defined as: 
 

                  (6) 

 
In summary, the local reachability density of an 

object X is the inverse of the average reachability 
distance based on the MinPts of X’. The local 
reachability density of X is defined as follows: 
 

          (7) 

  
Note that the local density can be Undefined if all 

the reachability neighbors are present. Also, the local 
density can be infinite (∞) if all the reachability 
distances in the summation are 0. This may occur for an 
object X if there are at least MinPts objects, different 
from X’, but sharing the same spatial coordinates, i.e., if 
there are at least MinPts duplicates of X’ in the dataset. 
 
Step 3: Compute LOF: The outlier factor of object X 
is the average of the ratio of the local reachability 
density of X and those of X’sMinPts-nearest neighbors. 
The Local Outlier Factor of X is defined as follows: 
 

          (8) 

( ) ( ) ( ){ }reach_dist k X, X’  = max  k _dis X , d X, X’  th th

MinPtsX' (X)MinPts
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reach-dist (X,X')
lrd (X) = 1 /M inPts N (X)
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In conclusion, the results showed that the higher 
the LOF value of X becomes when the lower X local 
reachability density is, then the higher the local 
reachability densities of X’ nearest neighbors become. 
The LOF computation procedure is presented as given 
below: 
 
Input: MinPts, ɛ.  
Output: LOF Score. 
Step 0: Calculate the kth-distance of each object in the 

dataset as given in Eq. (5). 
Step 1: Determine the local Reachability Distance for 

each object in the dataset as in Eq. (6) and (7). 
Step 2: Calculate the LOF as in Eq. (8). 
 
Minimize the effect of local outlier objects on the 

means function: As already mentioned, the effect of 
each object on the means function would decrease 
based on the number of belongs regions. More 
specifically, the weight for each object in the boundary 
region is used to reduce its effect on calculating the 
means. Hence the weight would be equal or less than 
0.5(w< = 0.5), depending on the number of upper 
regions that object belongs to. On the other hand, the 
weight of each object in the lower region is 1(w = 1), 
where no other regions belong to. However, taking the 
means of partition cluster may also have the effect of 
local outlying nature on the object. In this study, a 
proposed weight (w) (0.5<w<1) is concerned with the 
object/objects in the lower region, where the degree of 
each object being outlaid is provided. In summary, the 
effect of each object on the lower region would 
decrease only if it exceeds the outlying threshold 
(LOFT).  

Furthermore, the proposed weight (w) is defined in 
the means function as follows: 
 
Mk =  

 

��
��
 !" = $∑ %∗ '�

(^()*)
+(�,-) .

$∑ %∗ -
(^()*)

+(�,-) . 

�/01 (234 (	5) > 2347 & �^(	�) = 1), � = (1 < � < 0.5)
� = 1 3?ℎA1�5BA �CD

DD
E
(9) 

 
The proposed algorithm is described as below: 
Input: K Numbers, w, T, LOFT.  
Output: rough Clusters. 
BB Initialization. 
 
• Determine the initial means (max distance where 

LOF<= LOFT). 
• Assign each object X to the corresponding upper 

approximation of its nearest centroid. 
 
Step 1: Compute the new means as Eq. (9). 
Step 2: Assign into approximations space: 

• Determine the nearest Centroid as shown in Eq. 
(2): 

• Determine if further data object is also close to 
other centroids or not by using relative distance 
and threshold as defined in Eq. (3) 

• If T' ≠ ∅ then at least one other centroid is similarly 
close to the object. 

• If T' =∅ then no other centroids are similarly close 
to the object. 

 
Step 3: Check convergence of the algorithm. 
• If the algorithm has not converged continue to Step 

1. 
• Else STOP. 

 
Despite the fact that LOF method is a useful one, 

the computation of the LOF value of each data object 
requires a lot of MinPts nearest neighbor queries. This 
makes each calculation of LOF a costly operation. 
However, in this study, LOF calculation does not affect 
the calculation process of RKM algorithm. At the same 
time, it offers more benefits when LOF is applied on 
constrained RKM algorithm. In addition, applying LOF 
to RKM addresses the issue of algorithm sensitivity to 
initial centroids as well as reducing the algorithm run 
time. 

 
EXPERIMENTAL EVALUATION 

 
Three experiments were conducted in our 

laboratory lab. The first experiment is based on a 
synthetic dataset and the rest are applied to Iris and 
Vowel datasets taken from the UCI Machine Learning 
Repository. The results of Iris and Vowel datasets were 
examined by comparing between proposed weight to 
Hard K-Means and πRKM.  

Furthermore, the experimental results are evaluated 
based on a rough classifier validity index introduced in 
Peters (2015a). The rough classifier which is a simple 
and effective validation index can be applied as external 
criteria when labeled data are given. In addition, 
sufficient description on the rough classifier index is 
provided in Peters (2015a, 2015b). Besides, the paper 
provides the calculation of the returns of the obtained 
results when correctly clustered objects deliver positive 
returns (gains) and incorrectly clustered objects 
negative returns (penalties). A basic notation to assess 
the classifier quality index and returns penalty are 
described in Table 1. 
 
Synthetic dataset: A sample data (15 Objects) are 
presented as follows: 
 

Xn = �0.1 0.2 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.7 0.07 0.8 0.8 0.9 1.0 
0.1 0.0 0.1 0.2 0.3 0.3 0.2 0.4 0.5 0.6 0.8 0.8 0.7 0.6 0.9 � 
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Table 1:  Definition of important symbols in rough classifier validity index
Notation Description 
✔ The number of correctly classified objects derived from the objects assigned to lower approximations.

✘ Number of incorrectly classified objects.
QI1 Quality index of the objects in lower approximations.
QI2 Represents a conservative assessment strategy since it puts
QI5 Unweighted boundary objects.
QI6 π-weighted boundary objects. 
ρ Consider any deviation from this as slack and indicates how strongly boundaries are populated by objects.
ψ A penalty factor. 

 

 
Fig. 5: Score of 15 objects 
 
For ease of understanding, suppose the parameters 
MinPts = 2 and ɛ = 0.3. The LOF ratio for each object 
can be up or down (Fig. 5) and it is based on how the 
object is isolated from its neighbors. Similarly, among 
the 3-nearest neighbors (MinPts = 3) and 
value of LOF score is also marked in Fig. 5. 

In contrast, Fig. 6 shows the Data clusters based on 
first possible inputs of LOFT> = 4 and 
means become more accurate when the effect of local 
outliers is minimized. In addition, the means are 

 
Fig. 6: Two clusters based on proposed weight 
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Table 1:  Definition of important symbols in rough classifier validity index 

correctly classified objects derived from the objects assigned to lower approximations.
Number of incorrectly classified objects. 
Quality index of the objects in lower approximations. 
Represents a conservative assessment strategy since it puts the objects in the lower approximations in relation to all objects.
Unweighted boundary objects. 

 
Consider any deviation from this as slack and indicates how strongly boundaries are populated by objects.

For ease of understanding, suppose the parameters 
= 0.3. The LOF ratio for each object 

can be up or down (Fig. 5) and it is based on how the 
neighbors. Similarly, among 

= 3) and ɛ = 0.3, the 
value of LOF score is also marked in Fig. 5.  

In contrast, Fig. 6 shows the Data clusters based on 
> = 4 and w = 0.7. The 

means become more accurate when the effect of local 
outliers is minimized. In addition, the means are 

depicted as Mk = (0.1971, 0.2188), 
0.6361). 
 

Iris plant dataset: Iris dataset is a real world dataset 
(Anderson, 1935). The available dataset has 150 
random samples of flowers and three types of classes 
which are Setosa, Versicolor and Virginica

nature of the dataset shows that the first class is very 
easy to separate from the two other classes. LOF scores 
as  visualized  in  the  Fig. 7 to 9  is 

 

 

Fig. 6: Two clusters based on proposed weight  

correctly classified objects derived from the objects assigned to lower approximations. 

the objects in the lower approximations in relation to all objects. 

Consider any deviation from this as slack and indicates how strongly boundaries are populated by objects. 

 

= (0.1971, 0.2188), Mk = (0.6847, 

Iris dataset is a real world dataset 
. The available dataset has 150 

random samples of flowers and three types of classes 
Virginica. In fact, the 

dataset shows that the first class is very 
easy to separate from the two other classes. LOF scores 

  based on the inputs 
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Fig. 7: LOF score for setosa type 
 

 
Fig. 8: LOF score (Versicolor type) 
 

 
Fig. 9: LOF score (virginica type) 

 

 

Res. J. Appl. Sci. Eng. Technol., 14(8): 281-290, 2017 

 

287 

 

 

 



 

 

Res. J. Appl. Sci. Eng. Technol., 14(8): 281-290, 2017 

 

288 

Table 2: Summary of quality indices: The iris and the Vowel data sets 
Dataset Algorithm index ✔ ✘ ∑(✔+✘) ρ=1-∑(✔+✘) 

Iris       
 Hard K-Means      
  Cluster 132 18       150 -  
  QI0 0.88 0.12 1 -  
       
Proposed w to  Hard K-Means 
 Cluster 136 14 150 -  
  QI0 0.91 0.09 1 - 
       
 Propose w to  π RKM 
  Cluster 132 11 143  
  Lower approximation 7 0 7 - 
  Boundary:unweighted 3.5 0 3.5 - 
  QI1 0.9231 0.0769 1 0.0000 
  QI2 0.8800 0.0733 0.9533 0.0467 
  QI5 0.9267 0.7333 1 0.0000 
  QI6 0.9099 0.7333 0.9833 0.0167 
  QI1     
Vowel       
 Hard K-Means 
  Cluster 458 413      871 -  
  QI1 0.53 0.47 1 -  
       
Proposed w to  Hard K-Means 
  Cluster 473 398 871 - 

  QI1 0.5431 0.4569 1 - 
  Cluster 407 256 663 - 
  Lower approximation 143 65 208 - 
  Boundary:unweighted 66.356 29.67 94.35 - 
  QI1 0.6139 0.3861 1 0.0000 
  QI2 0.4673 0.2939 0.7612 0.2389 
  QI5 0.6315 0.3854 1 0.0000 
  QI6 0.5383 0.3327 0.8709 0.1291 

 

 
 
Fig. 10: Returns for the iris data (penalty ψ = 2.0) 
 
MinPts = 10, ε = 0.8. The maximum value is 69.6 and 
minimum ratio is 21.4. Additionally, setosa has a ratio 
that is in between 17.516 to 66.981, versicolor has a 
ratio that is in between 19.235 to 41.757 and that of 
virginica is between 21.336 to 47.928. 

Table 2 shows the different results between Hard 
K-Means, proposed weight to K-Means and proposed 
Weight to πRKM. Improved results are observed when 
LOFT = 33.4, T = 1.3 and the w = 0.7.  

Vowel data: The Vowel data consists of a set of 871 
Indian Telugu vowel sounds (Pal and Majumder, 1977), 
uttered by three male speakers in the age group of 30-
35 in a Consonant-Vowel-Consonant context. The three 
features correspond to the first, second and third vowel 
format frequencies obtained through spectrum analysis 
of the speech data. For LOF method, we applied 
parameters (Minpts = 30, ε = 0.25) and range of LOF 
score are in between (2.10 to 13.45). The improved
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Table 3: Returns (Iris and Vowel data) 

ψ A1. Hard K-Means 
A2. Proposed w to  Hard 
K-Means 

A3. Proposed w to  π 
RKM 

(A2-A1) 
∆1 

(A3-A1) 
∆2 

Iris data set      
 P = 132, N = 18 P = 136, N = 14 P = 132, N = 7   
0.5 123 129 128.5 6 5.5 
2.0 96 108 118 12 22 
5.0 42 66 97 24 55 
Vowel data set      
 P = 458, N = 413 P = 136, N = 14 P = 132, N = 7   
0.5 251.5 274 279 22.5 27.5 
2.0 -368 -323  -105 45 263 
5.0 -1607 -1517  -873 90 734 

 
results are seen in Table 2 with parameters LOFT = 5, T 

= 1.5, alongside the proposed w = 0.7. 
 

RESULTS AND DISCUSSION 
 

The results in Table 2 shows that the proposed 
weight improves the number of correct objects in 
positive clusters, while the number of incorrect object 
reduced. QI6 is considered as the most adequate for 
assessing the quality of rough clustering results. Our 
proposed weight, improved 2.66% of iris dataset and 
0.65% for Vowel dataset in comparison with results 
indicated in the related paper (Peters, 2015b). Also, the 
results in Table 3 shows the slacks used in indicating 
the proportion of objects that are neglected in the 
numerators in relation to the denominators (Peters, 
2015b) for more details). Based on the results, the 
penalties of proposed weight obviously decreased in 
comparison to proposed Weight to Hard K-means. 
Figure 10 shows the returns obtained from the Iris data 
for a penalty of ψ = 2.0, where the range of 1.1 ≤ T ≤ 
1.8 than the returns obtained by Hard k-means, πRKM 
and proposed weight to πRKM. 
 

CONCLUSION AND RECOMMENDATIONS 

 

Rough clustering is an effective alternative to hard 
clustering. RKM algorithm is conducted based on 
adopting the interpretation of rough set properties 
through applying traditional K-Means algorithm. This 
successful idea has received acceptance in many 
application domains with versions upgrade. Recently, a 
newly proposed method using Laplace’s principle of 
indifference has been applied to the means function of 
RKM algorithm. However, the implemented results by 
the authors in Peters (2015b) indicated that the RKM 
algorithm  still  requires  more  attention. One  reason is 
the number of incorrectly clustered objects. In this 
study, we attempt to find a solution to obtain a high 
number of correctly clustered objects. Therefore, we 
proposed a weight to minimize the effect of a local 
outlier on mean function. Furthermore, the LOF method 
was formulated to be used in measuring the objects in 
the dataset. The results are provided based on synthetic 
and real datasets. The inclusion of proposed weight to 

RKM provides convincing results. Moreover, the 
improved solution increased the number of correctly 
objects in the clusters and as well decreased the number 
of incorrectly objects in clusters. In future work, the use 
of the algorithm in real life application domain will be 
employed. 
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