
Research Journal of Applied Sciences, Engineering and Technology 13(9): 682-689, 2016 

DOI:10.19026/rjaset.13.3341 

ISSN: 2040-7459; e-ISSN: 2040-7467 

© 2016 Maxwell Scientific Publication Corp. 

Submitted: November  3,  2014                         Accepted: April  1,  2015 Published: November 05, 2016 

 

Corresponding Author: Othman Jabir, Prince Abdullah Bin Ghazi Faculty of Information Technology, Al-Balqa Applied 

University, Main Campus, Salt, Jordan 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

682 

 

Research Article  

Shape-and Orientation-independent 2D-Buddy Processor Allocation Strategy in 2-D  

Mesh-based Multicomputers 
 

Othman Jabir, Saleh Oqeili and Sulieman Bani-Ahmad 

Prince Abdullah Bin Ghazi Faculty of Information Technology, Al-Balqa Applied University, 

Main Campus, Salt, Jordan 
 

Abstract: We propose and evaluate a new processor allocation strategy in two-dimensional Multicomputers. The 

proposed strategy is comparatively evaluated against a set of well-known allocation strategies from the literature, 

namely; the 2D buddy System (Juang et al., 1997), the Multiple Buddy System and the Paging non-contiguous 

processor allocation strategies. Our experimental results show that the proposed allocation strategy has solved a 

number of flaws and drawbacks that have been observed in previously proposed strategies. Further, we observed 

that our proposed allocation strategy is scalable. We refer to the newly proposed strategy by the “Flexible 2D Buddy 

System” or F2DBS for short. In our experimental results, we also demonstrated that the F2DBS strategy is more 

flexible and applies to any 2D mesh of any shape and orientation. 

 

Keywords: Multicomputers, processor allocation, 2D buddy system, 2-D mesh, F2DBS 

 

INTRODUCTION 

 

Parallel computing in the present day acquired the 

largest space in a technology and the computer field 

(Rauber and Rünger, 2010; El-Rewini and Abd-El-Barr, 

2005; Bani-Ahmad, 2011b). In fact, parallel computing 

and high performance computing in general, has 

become the dominant paradigm in computer 

architecture today. 

Parallel computing uses multiple processing 

elements (CPUs basically) simultaneously to solve a 

problem (Bani-Ahmad, 2013). The problem in hand is 

thus broken down into multiple and (hopefully) 

independent parts which such that each processing 

element can execute its part of the problem 

simultaneously with others (Grama et al., 2003). 

In Multicomputers, when job A requests group of 

processors, the request of this job is processed 

following the same set of steps regardless of the 

underlying processor allocation strategy used. First, if 

no enough processors can be found for the job then this 

job must enter a waiting queue. The waiting queue 

follows a certain scheduling mechanism, which deals 

with these jobs and selects the next job to serve 

(Feitelson and Rudolph, 1996). Assuming job A is 

scheduled, the processor allocation module of the 

system tries to allocate processors for the job (Dhotre, 

2009).  

Performance and efficiency of processor allocation 

strategies is of utmost importance in parallel 

computing. A good and high-efficiency allocation 

strategy tries to exploit the processor's network in the 

best way without any problems and delays and as we 

mentioned earlier that supercomputer needs to process 

the operations very quickly (Penrose and Wade, 2003). 

An allocator is responsible for booking a free 

processor to incoming job, while job scheduling or 

(scheduler) is responsible for controlling the order of 

waiting jobs for processing. 

There are two main types for processor allocation: 

 

• Contiguous Allocation strategies which involve 

booking processors as one block 

• Non-contiguous Allocation strategies that do not 

depend on booking processors as one block. 

 

LITERATURE REVIEW 

 

Processors allocation strategies and scheduling 

mechanisms are the main topics in parallel computing 

and these topics are linked together and affect each 

other. And its efficiency and performance are reflected 

on system and user. Researchers try to develop new 

processor allocation strategies that are efficient and of 

better performance. Studies show that the processor's 

allocation strategy used can significantly affect the 



 

 

Res. J. Appl. Sci. Eng. Technol., 13(9): 682-689, 2016 

 

683 

efficiency of parallel computing systems (Parhami, 

2005). 

 
Processors allocation strategies: Processors allocation 
strategies are divided into two main types (Contiguous 
processor Allocation strategies and non-Contiguous 
processor allocation strategies) and recently there is a 
new type appears combining the previous types as in 
Bani-Ahmad (2011a, 2013). 
 
Contiguous allocation strategies: 
Frame sliding: Examines the first candidate frame 
from the lower left most available processor and 
candidate frame is slid horizontally or vertically by the 
stride of the width or height of the requested submesh, 
respectively until an available frame is found (De Rose 
et al., 2007; Windisch et al., 1995a). It has high 
allocation overhead, O (n). 
 
First fit: Scans the mesh for a free rectangular submesh 
large enough for the requested submesh and allocates 
from the first one found. (Bani-Mohammad et al., 2007; 
Windisch et al., 1995a). In First Fit algorithm allocation 
and deallocation both have a complexity of O (n). 
 
Best fit: Scans the mesh for free rectangular submeshes 
large enough for the requested submesh and allocates 
from the one closest in size to the request (Bani-
Mohammad et al., 2007; Windisch et al., 1995a). Best 
Fit algorithm both have allocation and deallocation 
overhead of O (n). 
 
Non-contiguous allocation strategies: 
Random: Randomly selects processors from the set of 
free processors to satisfy the request (Windisch et al., 
1995b, 1995a). The complexity of both allocation and 
deallocation is O (k), where k is the number of 
processors for satisfying the process (job). 
 
Paging (i): Based on a static partitioning of the mesh 
into pages of size 2

i
×2

i
 repeatedly allocates pages to the 

job in row major order until enough processors have 
been allocated to satisfy the request. Variations of 
paging  use  scan  patterns  other  than  row major (Lo 
et al., 1997;  Windisch  et al., 1995a). The complexity 
of allocating is O (k) and the complexity of deallocation 
is O (n), where k is a number of processors for 
satisfying the process (job). 
 
Multiple buddies: Allocates multiple square blocks 
whose side lengths are powers of two until the job has 
received exactly the number of processors requested 
(Liu et al., 1994; Li and Cheng, 1990;  Windisch  et al., 
1995a). The complexity of both allocation and 
deallocation for MBS Algorithm is O (n). 
 
Scheduling mechanisms: 
First Come First Served (FCFS): "As the name 
suggests, in FCFS scheduling, the processes are 
executed in the order of the arrival in the ready queue, 

which means the process that enters the ready queue 
first, get the CPU first" (Sargunar, 2011). 
 
Last Come First Served (LCFS): As in the FCFS 
scheduling mechanism with a difference, where the 
process that enters the ready queue last, get the CPU 
first. 
 
Shortest (Longest) Service Demand (SSD, LSD): The 
job with short (long) service demand will first 
processing and service demand multiplied by the 
number of processors are job neediest. The service 
demand is calculated as the estimated service time 
multiplied by the number of processors needed. 
 
Shortest (Longest) Hold Time (SHT, LHT): The jobs 
with short (long) hold time will first processing. Hold 
time is the time the job spends in waiting queue. 
 
Smallest (Largest) Job first: These mechanisms 
depend on size of job and the number of processors the 
job need. 
 

THE PROPOSED PROCESSOR ALLOCATION 

STRATEGY 
 

In modern processor allocation strategies, we have 
noticed many researchers tend to divide the Mesh to 
enhance the performance and we found a set of 
algorithms with good performance such as the Multiple 
Buddy Systems (MBS), 2-D Buddy System (2DBS) 
and Paging. 

In this study we developed a flexible strategy that 
gave a range of options in the division, unlike other 
strategies, which restricted the mesh division. For 
example, in paging (i) allocation strategy the mesh 
division has been restricted by the formula (2

i
×2

i
) 

where the division will be restricted by the number of 2 
multiplied only (1×1, 2×2, 4×4, 8×8, 16×16 … etc.) 
other dimensions are forbidden in this strategy for 
example (1×2, 3×3, 5×5). 

In a 2-D Buddy System situation, the dimensions 
of mesh subdivisions are not restricted to number 2 
multiplied, the only restriction is that the two 
dimensions of the submeshes be equal. 

In Multiple Buddy System, the division starts from 
2
i
 until 2° and we note that the division, again, is 

restricted to be multiple of the number 2. 
Our new algorithm significantly reduces those 

restrictions, the groundwork for the new algorithm is to 
control the division of mesh and make it more flexible. 
We note in the previous algorithms that the division is 
static and restricted and some algorithms control the 
mesh size too. In the new strategy, we will be having 
flexibility in dividing the mesh.  

 

The F2DBS algorithm: 
Step 1 : Let M (w, h) be a 2-D mesh with size wxh, J 

(Js) be a job of size Sj to be allocated. 



 

 

Res. J. Appl. Sci. Eng. Technol., 13(9): 682-689, 2016 

 

684 

    
 

Fig. 1: Demonstrating the proposed algorithm through an 

example 

 

 
 
Fig. 2: Dynamically reconstructing processing unit blocks in 

the proposed approach 

 
Note: A pre-scheduling step is to subdivide the 

system mesh in hand into blocks each of which 
is of a given dimension   (e.g., let   D (w’, h’)   
be   the   mesh   block dimensions). This 
dimension is decided such that it is suitable for 
the shape and orientation of the mesh. 

Step 2: If the current job size is smaller than or equal to 
the total number of idle processing units, then; 
Give one idle block of size S to the current job  
If no blocks of that size exist, reduce the size S  
If the allocated block is enough for the job  
Done, return success  
ELSE 
Assign another idle block until the allocation is 
successful. 

Step 3: Else Allocation Failed, Put the Job back to the 
wait queue. 

 
Scenario (Fig. 1): Assume having a (4×4) 2-D mesh, 
with processors 0, 2, 5, 7 and processors from 8 to 15 
be busy. Assume further that we received a new task 
that seeks a block of size (2×2). The 2DBS algorithm 
divides the mesh into (2

1
×2

1
) submeshes and save it to 

list. 
With the 2DBS applied, four submeshes exist and 

can be allocated for this request: those are (0, 1, 2, 3/4, 
5, 6, 7/8, 9, 10, 11/12, 13, 14 and 15). We note that we 
have 2×2 submesh available in the system (1, 3, 4, 6) 
but we can't use it because it is not in the list that the 
2DBS algorithm makes. Our new allocation strategy 
makes it more flexible and allows the job to use every 
processor available in the mesh.  

We note in the previous division that we face a 
problem and the (2DBS) algorithms do not give us any 
other option, but to wait and that affects the efficiency. 
If we take the previous scenario according to the new 
strategy (F2DBS), we will choose the new dimension 
for the mesh division let (2×1), so the mesh division 
will be as shown in Fig. 2. 

Now we have eight sub meshes according to the 
new division. The free sub meshes are (1, 3) and (4, 6) 

and we can use them to allocate the job (2×2) easily. 
We note that the new strategy gives us multiple options 
for booking the job in our 2D mesh. 
 
Note: This dimension is considered suitable for the 
shape and orientation of the mesh. 

In the previous scenario, we discussed one strategy, 
which is (2-D buddy system). And it turns that our new 
proposed allocation strategy (Flexible 2-D Buddy 
System) was able to solve the problem that appeared in 
the scenario (4.1) that by changing the division 
dimension. And this is the flexibility we are talking 
about in our new proposed allocation strategy. Note that 
the solution is very simple but very effective. 

 
EXPERIMENTAL SETUP 

 
We use ProcSimity v3.4 Simulator in our 

experiments. As mentioned earlier, we must 
comparatively evaluate processor allocation strategies. 
 
Allocation strategies implemented in ProcSimity: 
There are set of allocation strategies defined in the 
simulator as follow: Random*, Multiple Body System 
(MBS), Paging, First Fit (FF), Best Fit (BF) and Frame 
Sliding. Details about each of these algorithms can be 
found in  Windisch  et al. (1995a). 
 
Communication pattern implemented in 
ProcSimity: A method used to communicate between 
processors. 

There are set of communication pattern defined in 
the simulator as follow: No Communication, All-to-All, 
N-Body, One-to-All Random, FFT, NAS Multigrid 
Benchmark, Divide and Conquer Binomial Tree 
Algorithm, NAS Kernel CG Benchmark. Details about 
each of these communication patterns can be found in  
Windisch  et al. (1995a). 

ProcSimity implement a number of communication 
patterns. The most important of which are:  
 

• All-to-All communication pattern: Each 

processor in a job sends message to other 

processors in the same job 

• One-to-All communication pattern: Randomly 
select a processor in the job and this processor 
sends message to processors in the same job 

• Random communication pattern: Each processor 

in a job repeatedly sends message to another 

processor randomly 

• N-body communication pattern: "In the n-body 
pattern, the processors assigned to a job form a 
virtual ring, for a job using n processors, every 
processor sends a message to its successor 
processor in the ring in each of (n/2) ring 
subphases and then sends a message to the 
processor halfway across the ring during a single 
chordal subphase" (Bunde et al., 2004), as shown 
in Fig. 3. 



 

 

Res. J. Appl. Sci. Eng. Technol., 13(9): 682-689, 2016 

 

685 

 
 

(a)                       (b)                        (c) 

 
Fig. 3: Messages sent during an N-body communication 

pattern (Bunde et al., 2004) 

 
Scheduling mechanisms implemented in ProcSimity: 
The method used to organize the jobs and determine the 
processing priority. There are set of scheduling 
mechanism defined in the simulator as follow: First 
Come First Serve (FCFS), Last Come Last Serve 
(LCFS), Shortest Service Demand First (SSD), Shortest 
Hold Time First (SHT), Smallest Job First, Longest 
Service Demand First (LSD), Longest Hold Time First 
(LHT), Largest Job First and Scan Up. Details about 
each of these communication patterns can be found in  
Windisch  et al. (1995a). 
 

EXPERIMENTAL RESULTS AND 
OBSERVATIONS 

 
Comparison and discussion: First, we will identify the 
basic simulator inputs that we use in the comparison 
between our new allocation strategy and the other 
allocation strategies. 
 
Mesh Dimension (width×height): We select the group 

sizes that we will deal with, that is, will be (16×32), 

(32×32) and (30×15). 

 

Number of jobs: It will be 1000 jobs in every run. 
 
Number of runs: It will be 10 runs in every simulation 
run. Next we compare our new allocation strategy with 
other allocation strategies that mentioned before. And 
we show if our new proposed allocation strategy 
improves performance and raise efficiency in the 
processor allocation in 2-D mesh-based multicomputer.  
 
Comparison phase II: After determining the best 
communication pattern and the best scheduling 
mechanism that gave us the best performance and high 
efficiency with our new strategy, here comes the phase 
of comparison with other allocation strategy algorithms. 
 
Scenario (1): 
Mesh width = 16, Mesh Height = 32 
Page width = 2, Page Height = 4 
Communication pattern: N-Body 
Scheduling mechanism: Shortest Hold Time (SHT) 
 

We note that (2DBS) algorithm does not work in 

this case, because it requires that the mesh height and 

width must be equal. 

 
 
Fig. 4: Average response time for N-Body in multi allocation 

strategies with Mesh (16×32) 

 
Now for F2DBS algorithm and the rest of 

algorithms, note that our algorithm achieved readings 
with high efficiency compared with the rest of the 
algorithm, for example, the average response time, our 
algorithm achieved a result of 596.7 and closer 
algorithm is Paging (2) algorithm achieved 1750.12, 
knowing that the average response time is the principal 
criterion for the comparison between the allocation 
strategies and it was the best proof of the preference of 
our algorithm on the rest of the algorithms. However, 
also note the priority of our algorithm on the rest of the 
algorithms in all the readings, we note its superiority in 
average service time and system load and an average 
finish time. 
 

Observations on Fig. 4: 

• The best allocation strategy is our new proposed 
allocation strategy (F2DBS) with result 596.7. 

• Note the preference for paging (2) allocation 
strategy on the rest of the other strategies with 
result 1750.12. 

• Note that the best strategy paging (2) achieved a 
result 1750.12 and this is too far from what our 
new proposed strategy achieved 596.7 and this 
demonstrates the high efficiency of our new 
allocation strategy. 

• The worst allocation strategy is Random Allocation 
strategy. 

 

Observations on Fig. 5: 

• The best allocation strategy is our new proposed 

allocation strategy (F2DBS) with result 417.57, 

where there is convergence between the results 

compared to paging (2) that achieved 657.55. 

• The worst allocation strategy is Random Allocation 
strategy. 

 

Observations on Fig. 6: 

• The best allocation strategy is our new proposed 

allocation strategy (F2DBS) with result 34.93. 

• There is convergence between paging (2) 

allocation strategy and paging (3) allocation 

strategy. 



 

 

Res. J. Appl. Sci. Eng. Technol., 13(9): 682-689, 2016 

 

686 

 
 
Fig. 5: Average service time for N-Body in multi allocation 

strategies with Mesh (16×32) 

 

 
 
Fig. 6: System load for N-Body in multi allocation strategies 

with Mesh (16×32) 

 

 
 
Fig. 7: Average system utilization for N-Body in multi 

allocation strategies with Mesh (16×32) 

 

• The worst allocation strategy is Random Allocation 
strategy. 

 
Observations on Fig. 7: 

• The best allocation strategy is paging (3) allocation 
strategy achieved 1% and then paging (2) achieved 
24%. 

• Our new allocation strategy (F2DBS) achieved 
64% and this is not the best result in average 
system utilization. 

• The worst allocation strategy is Random Allocation 
strategy. 

 

Observations on Fig. 8: 

• The best allocation strategy is our new proposed 

allocation strategy (F2DBS) with result 15243.72. 

 
 

Fig. 8: Average finish time for N-Body in multi allocation 

strategies with Mesh (16×32) 

 

• There is convergence between paging (2) 
allocation strategy and paging (3) allocation 
strategy. 

• The worst allocation strategy is Random Allocation 
strategy. 

 
Summary of observations: When we use (16×32) 2-D 
mesh and N-Body communication pattern and Shortest 
Hold Time (SHT) scheduling mechanism we can 
extract some points: 
 

• The best allocation strategy it is our new proposed 
strategy flexible 2-D buddy system (F2DBS). 

• Compared with other allocation strategies, except 
our new proposed allocation strategy, paging (2) is 
the best allocation strategy. 

• The worst allocation strategy is Random Allocation 
strategy. 

• In average system utilization the paging (3) 
achieved the best result comparing with other 
allocation strategies. 

 
Scenario (2): 
Mesh width = 30, Mesh Height = 15 
Page width = 5, Page Height = 5 
Communication pattern: N-Body. 
Scheduling mechanism: Shortest Hold Time (SHT) 
 

We note that (2DBS) and (Paging(i)) algorithms do 
not work, that's because (2DBS) requires that mesh 
height and width must be equal in mesh and (Paging(i)) 
requires that mesh dimension must be from number 2 
multiplied such as (2, 4, 8, 16, 32, … etc.). 

Here, there is no need to compare between the 
readings of our algorithm and other existing algorithms. 

For example, the average response time, our 
algorithm achieved 2430.27 and the closer one is 
(MBS) achieved 10871.28 and this is a huge difference 
when compared with each other and this applies to the 
rest of the readings as our algorithm achieved reading 
with very high efficiency compared to the rest of the 
algorithms. 

 

Summary of observations for Fig. 9 to 13: When we 

use   (30×15)   2-D   mesh  and N-Body communication  



 

 

Res. J. Appl. Sci. Eng. Technol., 13(9): 682-689, 2016 

 

687 

 
 
Fig. 9: Average response time for N-Body in multi allocation 

strategies with Mesh (30×15) 

 

 
 
Fig. 10: Average service time for N-Body in multi allocation 

strategies with Mesh (30×15) 

 

 
 
Fig. 11: System load for N-Body in multi allocation strategies 

with Mesh (30×15) 

 

 
 
Fig. 12: Average system utilization for N-Body in multi 

allocation strategies with Mesh (30×15) 

 
pattern and Shortest Hold Time (SHT) scheduling 
mechanism we can extract some points: 

 

• The best allocation strategy it is our new proposed 

strategy Flexible 2-D Buddy System (F2DBS) 

 
 

Fig. 13: Average finish time for N-Body in multi allocation 

strategies with Mesh (30×15) 

 

 
 

Fig. 14: Average response time for N-Body in multi allocation 

strategies with Mesh (32×32) 

 

• The worst allocation strategy is Random Allocation 

strategy. 

•  In this case shows the benefit of our new proposed 

allocation strategy where (F2DBS) avoided the 

drawbacks of other allocation strategy with good 

performance and high efficiency 

 

Scenario (3): 
Mesh width = 32, Mesh Height = 32 

Page width = 4, Page Height = 4 

Communication pattern: N-Body 

Scheduling mechanism: Shortest Hold Time (SHT) 

 
This case is the most famous case in allocation 

strategy's comparison. It is the basic case and supported 
by many researchers. In this case, we note that there is a 
preference for our new algorithm for all other 
algorithms, Average response time, Average service 
time, System load, Average system utilization) and 
Average finish time, all of these standards our new 
algorithm has high-efficiency readings and this guide to 
improve the performance of the processor allocation. 

 

Observations on Fig. 14: 

• The best allocation strategy is our new proposed 

allocation strategy (F2DBS) with result 404.16, 

with a preference for paging (2) allocation strategy 

on the rest of the other strategies with result 

919.35. 

• Note that the best strategy paging (2) achieved a 

result  919.35  and  this  is  the  double  of what our 



 

 

Res. J. Appl. Sci. Eng. Technol., 13(9): 682-689, 2016 

 

688 

 
 
Fig. 15: Average service time for N-Body in multi allocation 

strategies with Mesh (32×32)  

 

 
 
Fig. 16: System load for N-Body in multi allocation strategies 

with Mesh (32×32) 

 

 
 
Fig. 17: Average system utilization for N-Body in multi 

allocation strategies with Mesh (32×32) 

 

 
 
Fig. 18: Average finish time for N-Body in multi allocation 

strategies with Mesh (32×32) 

 

new proposed strategy achieved 404.16. And this 

demonstrates the high efficiency of our new 

allocation strategy. 

• The worst allocation strategy is Random Allocation 

strategy. 

Observation on Fig. 15: 

• The best allocation strategy it is our new proposed 

allocation strategy (F2DBS). 

• The worst allocation strategy is Random Allocation 

strategy. 

• There is convergence between the paging (2) 

allocation Strategy and paging (3) allocation 

strategy.  

 

Observation on Fig. 16: 

• The best allocation strategy it is our new proposed 

allocation strategy (F2DBS). 

• The worst allocation strategy is Random Allocation 

strategy. 

• There is convergence between the paging (2) 

allocation Strategy and paging (3) allocation 

strategy. 

 

Observation on Fig. 17: 

• In system, load criterion the best allocation strategy 

is paging (3). 

• The worst allocation strategy is Random Allocation 

strategy. 

• Our proposed allocation strategy achieved 34% but 

paging (2) allocation strategy achieved 22% and 

paging (3) allocation strategy achieved 8% and 

these results had better than our strategy's result.  

 

Observation on Fig. 18: 

• The best allocation strategy it is our new proposed 

allocation strategy (F2DBS). 

• The worst allocation strategy is Random Allocation 

strategy. 

 

Summary of observations: When we use (32×32) 2-D 

mesh and N-Body communication pattern and Shortest 

Hold Time (SHT) scheduling mechanism, we can 

extract some points: 

 

• The best allocation strategy it is our new proposed 

strategy flexible 2-D buddy system (F2DBS) 

except system load criterion. 

•  In system load criterion, paging (3) is the best 

allocation strategy. 

• The worst allocation strategy is Random Allocation 

strategy. 

 

CONCLUSION 

 

In this study a new processor allocation strategy in 

2-D mesh-based multicomputers was proposed. The 

new allocation strategy successes avoid the drawbacks 

shown in the other processor allocation strategies such 

as (2D Buddy System, the Multiple Buddy System and 

the Paging non-contiguous Processor allocation 

strategies), with good performance and high efficiency. 



 

 

Res. J. Appl. Sci. Eng. Technol., 13(9): 682-689, 2016 

 

689 

After multiple stages of comparison through 

ProcSimity simulator, we infer the following set of 

advantages about the proposed processor allocation 

strategy "Flexible 2-D Buddy System (F2DBS)": 

 

• The best communication pattern with the proposed 

allocation strategy (F2DBS) is (N-Body) 

communication pattern and the worst one is (One-

to-All) communication pattern. 

• The best scheduling mechanism with the proposed 

allocation strategy (F2DBS) is Shortest Hold Time 

(SHT). 

• The stability of some readings and not being 

different from one to another. And this is a good 

indicator of the possibility of adopting any type of 

scheduling mechanism (Flexibility in choosing 

scheduling mechanism in some cases). 

• Our new proposed allocation strategy could solve 

problems in some other allocation strategies like 

(2DBS) and (Paging (i)), where we could get a 

reading with high efficiency, whether mesh has 

equal dimension or dimensions were not multiplied 

of 2. 

• Our new proposed allocation strategy outperformed 

the rest of the algorithms where it is readings very 

efficient compared to the other allocation strategy's 

readings. 

• The proposed allocation strategy applies to any 2-D 

mesh of any shape and orientation. 

 

REFERENCES 

 

Bani-Ahmad, S., 2011a. Bounded gradual-request-

partitioning-based allocation strategies in 2D-mesh 

multicomputers. Int. J. Digital Content Technol. 

Appl., 5(1).  

Bani-Ahmad, S., 2011b. Processor allocation with 

reduced internal and external fragmentation in 2D 

Mesh-based multicomputers. J. Appl. Sci., 11(6): 

943-952. 

Bani-Ahmad, S., 2013. Submesh allocation in 2D-Mesh 

multicomputers: Partitioning at the longest 

dimension of requests. Int. Arab J. Inf. Techn., 

10(3): 245. 

Bani-Mohammad, S., M. Ould-Khaoua and I. Ababneh, 

2007. A new processor allocation strategy with a 

high degree of contiguity in mesh-connected 

multicomputers. Simul. Model. Pract. Th., 15(4): 

465-480. 

Bunde, D.P., V.J. Leung and J. Mache, 2004. 

Communication patterns and allocation strategies. 

Proceeding of the 18th International Parallel and 

Distributed Processing Symposium. 

De Rose, C.A.F., H.U. Heiss and B. Linnert, 2007. 

Distributed dynamic processor allocation for 

multicomputers. Parall. Comput., 33(3): 145-158. 

Dhotre, I.A., 2009. Operating Systems. 7th Edn., 

Technical Publication Pune, India. 
El-Rewini, H. and M. Abd-El-Barr, 2005. Advanced 

Computer Architecture and Parallel Processing. 
John Wiely and Sons Inc., Hoboken, N.J.  

Feitelson, D.G. and L. Rudolph, 1996. Job scheduling 
strategies for parallel processing. Proceeding of the 

IPPS'96, Honolulu, Hawaii. 
Grama, A., A. Gupta, G. Karypis and V. Kumar, 2003. 

Introduction to Parallel Computing. 2nd Edn., 
Addison Wesley, Boston, Massachusetts. 

Juang, T.Y.T., Y.C. Tseng and Y.S. Chen, 1997. An 

enhanced 2D buddy strategy for submesh 
allocation in mesh networks. Proceeding of the 3rd 
International Conference on Algorithms and 
Architectures for Parallel Processing. Melbourne, 

Vic., pp: 345-352. 
Li, K. and K.H. Cheng, 1990. A two dimensional buddy 

system for dynamic resource allocation in a 
partitionable mesh connected system. Proceeding 

of the ACM Annual Conference on Cooperation 
(CSC '90). New York, pp: 22-27.  

Liu, W., V. Lo, K. Windisch and B. Nitzberg, 1994. 
Non-contiguous processor allocation algorithms for 
distributed memory multicomputers. Proceeding of 

the ACM/IEEE Conference on Supercomputing 
(Supercomputing '94). New York, pp: 227-236. 

Lo, V., K.J. Windisch, W. Liu and B. Nitzberg, 1997. 
Noncontiguous processor allocation algorithms for 

mesh-connected multicomputers. IEEE T. Parall. 
Distr., 8(7): 712-726  

Parhami, B., 2005. Computer Architecture: From 
Microprocessors to Supercomputers. Oxford 
University Press, New York, pp: 575. 

Penrose, D.E.M. and E. Wade, 2003. Interconnection 
Networks: An Engineer Approach. Elsevier 
Science, USA. 

Rauber, T. and G. Rünger, 2010. Parallel Programming: 

For Multicore and Cluster Systems. Spring-Verlag, 
Berlin. 

Sargunar, J., 2011. Introduction to Computer Science. 
2nd Edn., Dorling Kindersley, India. 

Windisch, K., J.V. Miller and V. Lo, 1995a. 
ProcSimity: An experimental tool for processor 
allocation and scheduling in highly parallel 
systems. Proceeding of the 5th Symposium on the 
Frontiers of Massively Parallel Computation. 

Washington, DC, USA. 
Windisch, K., V. Lo and B. Bose, 1995b. Contiguous 

and non-contiguous processor allocation 
algorithms for k-ary n-cubes. IEEE T. Parall. 

Distr., 6: 414-421  
 

 


