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Abstract: The aim of this study is to analyze the robot arm kinematics which is very important for the movement of 

all robotic joints. Also they are very important to obtain the indication for controlling or moving of the robot arm in 

the workspace. In this study the kinematics of ROB0036 DFROBOT Arm will be accomplished by using LabVIEW. 

Finding the parameters of Denavit-Hartenberg representation, the kinematic equations of motion can be derived 

which solve the problems of automatic control of the 6 revolute joints DFROBOT manipulator. The kinematics 

solution of the LabVIEW program was found to be nearest to the robot arms actual measurements. 
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INTRODUCTION 

 
The kinematics problem is related to finding the 

transformation from the Cartesian space to thejoint 
space and vice versa. The solutions of the kinematics 
problem of any robot manipulatorhave two types; the 
forward kinematic and inverse kinematics. When all 
joints are known the forward kinematic will determine 
the Cartesian space, or where the manipulator arm will 
be. In the inverse kinematic the calculations of all joints 
is done if the desired position and orientation of the 
end- effectors is determined, that means by the inverse 
kinematic the robotic arm joint space angles will be 
calculated as referred to Craig (2005).  

A six degree of freedom DFROBOT has five 
rotational joints with a gripper and operate with their 
servo motors connected as an intersecting or parallel 
joint axis, it is a low cost educational robot 
manipulator, flexible and similar to industrial robot 
arms. In this study the parameters of the standard 
Denavit Hardenberg listed in Table 1 for the 6DOF 
Robot Arm shown in Fig. 1 has been used for modeling 
and simplifying its associated kinematics.  

The kinematic analysis of industrial robots was 
discussed in many literatures (Craig, 2005; Spong et al., 
2005). Koyuncu and Guzel (2007) suggested a method 
for solving the kinematics of the Lynx 6d of Robot and 
propose a software package named MSG that used to 
test the behavior of robot motion. Qassem et al. (2010) 
proposed a software package to solve the kinematics of 
the AL5B Robot arm. More analysis have been 

achieved for modeling a 6dof robotic manipulators 
using the MATLAB software for their simulation by 
Iqbal et al. (2012), Kumar et al. (2013) and Singh et al. 
(2015).  

Forward kinematic is much easier than inverse 
kinematic and so called direct kinematic, Mohammed 
and Sunar (2015) began their kinematic analysis by 
using the product of Exponential Formula (PE) to 
simplify the analysis.  

In this study a simple and direct solution to the 
mathematical model and kinematical analysis of the 
DFROBOT equations which relate all joints together as 
refer to the base is achieved. Applying the robot arm 
kinematics on LabVIEW, the manipulator motion can 
be introduced with respect to its mathematical analysis.  

In this study the target will be on the Kinematics 
and how to obtain the joint angles from the inverse 
kinematics modeling that can be used for the control of 
a variety of industrial processes. The work takes the 
benefit of using the numeric values for the position and 
orientation of the end- effector which is the results of 
the forward kinematics and find all the joint angles of 
the robot arm from the inverse kinematic solutions 
applied in the new developed closed form package of 
the 6 DOF robot which is the case study of this study.  

 

DFROBOT MODELING 

 

The DFROBOT is a 6DOF robotic arm delivers 

fast, accurate and repeatable movement and called 

articulated because  it  has  a  series manipulator having  
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Table 1: The DH parameters of the DFROBOT 

Joint  Link  

0-1 1 

1-2 2 

2-3 3 

3-4 4 

4-5 5 

5-6 6 

 

 

Fig. 1: 6DOF robot manipulator 

 

 

Fig. 2: Kinematic modeling block diagram 

 

 

Fig. 3: The robot coordinate frame 

 

all joints as revolute. The main features of this kind: 

base rotation, single plane shoulder, elbow, wrist

motion, functional gripper and optional wrist rotate. 

The kinematic modeling requires the solutions of the 

forward and inverse kinematics of the manipulator

the link parameters are needed for the two solutions

shown in the block diagram of Fig. 2. 
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ai-1 min  αi-1 degree di mm 

0  0 45 

0  90 0 

90  0 0 

90  0-90 0 

0 -90 30 

0  0 0 

 

 

 

 

all joints as revolute. The main features of this kind: 

shoulder, elbow, wrist 

otion, functional gripper and optional wrist rotate. 

The kinematic modeling requires the solutions of the 

inematics of the manipulator and 

parameters are needed for the two solutions as 

FORWARD KINEMATICS
 

The joint variables of the robot are given to 
determine   the   position and   orientation
effector. Each joint for each frame has a single degree 
of freedom and can be represented by a single number, 
which is the angle of rotation in the case of a revolute 
joint i.e., (θ�, θ�, … . . , θ�, θ����. Starting from the base 
which is denoted as link 0 to the n links the cumulative 
effect of the joint variables can be calculated.
unit vector along the axis in space between links i
i. Next, each link is attached with coordinate frames 
from 1 to n, the frame i is rigidly attached to link i. 
Figure 3 illustrates the DFROBOT frames and links 
connections.  

Assignments of joints and all parameters used to 
define the robot frames can be defined by using the DH 
parameters table explained by Tahseen (2013).

Table 1 shows the related six joints parameters of 
the robotic arm ROB0036 manipulator in order to find 
the position and orientation of the rigid body which is 
useful for obtaining the composition of coordinate 
transformations between the consecutive frames

 
where,  a
 : The length distance from z

along z
 
α
: The twist angle between z
 

about x
 d
: The offset distance from x
 to xz
 
θ
: The angle between x
 and x
��measured about 
 

Forward kinematics analysis is the process of 
calculating the position and orientation of the end
effector with given joints angles so by substituting these 
parameters in the homogenous transformation matrix 
from joint i to joint i+1 (Craig, 2005):
 

Ai = ���
��θi �SθiCαi SθiSαiSθi CθiCαi �CθiSαi0 Sαi Cαi0 0 0

 
The transformation matrices 

DFROBOT joints can be obtained as shown:
 

A�� � A�= �C� �S� 0 0S� C� 0 00 0 1 d�0 0 0 1 � 

θi degree 

θ1 

θ2 

θ3 

θ4 

θ5 
gripper 

FORWARD KINEMATICS 

The joint variables of the robot are given to 
tion and   orientation of the end-

effector. Each joint for each frame has a single degree 
of freedom and can be represented by a single number, 
which is the angle of rotation in the case of a revolute 

Starting from the base 
which is denoted as link 0 to the n links the cumulative 
effect of the joint variables can be calculated. z
 is a 
unit vector along the axis in space between links i-1 and 
i. Next, each link is attached with coordinate frames 
from 1 to n, the frame i is rigidly attached to link i. 
Figure 3 illustrates the DFROBOT frames and links 

ts and all parameters used to 
define the robot frames can be defined by using the DH 
parameters table explained by Tahseen (2013). 

Table 1 shows the related six joints parameters of 
the robotic arm ROB0036 manipulator in order to find 

ntation of the rigid body which is 
useful for obtaining the composition of coordinate 
transformations between the consecutive frames:  

z
 to z
�� measured 

 and z
�� measured 

x
�� measured along 

measured about z
 
Forward kinematics analysis is the process of 

calculating the position and orientation of the end- 
angles so by substituting these 

parameters in the homogenous transformation matrix 
from joint i to joint i+1 (Craig, 2005): 

aiCθii aiSθidi1 ���
 
 

The transformation matrices A�and A! for the 
DFROBOT joints can be obtained as shown: 

�                            (1) 
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where, the matrix A� for example shows the 

transformation between frames 0 and 1, C
 = cosθ
 and S
= sinθ
: 
 

A"� � A"= �C" 0 S" 0S" 0 �C" 00 1 0 0 0 0 0 1�                            (2)  

 

A#" � A# = �C# �S# 0 a#C#S# C# 0 a#S#0 0 1 00 0 0 1 �              (3)  

 

A$# � A$ = �C$ �S$ 0 a$C$S$ C$ 0 a$S$0  0 1 00 0 0 1 �              (4)  

 

A%$ � A%= �C%  0 �S% 0S%  0 C% 00 �1  0 d%0  0  0 1 �              (5)  

 

A!% � A! = �C! �S! 0 0S! C! 0 00  0 1 00  0 0 1�                            (6)  

 
Performing the composition from the n- th frame to 

the base frame we multiply the six matrices from 1 to 6:  
 A��  = A��  . A"�  ….. A���� = ∏  A

���
'� = (R�� P��0 1 + 

 
where, R is a 3×3 matrix for rotation and P is the 
position, so the total matrix of transformation: 
 A!� = A�� ∗ A"� ∗ A#" ∗ A$# ∗ A%$ ∗ A!%  

= -n/ o/ a/ p/n2 o2 a2 p2n3 o3 a3 p30 0 0 1 4                                           (7)  

 

where, p/, p2, p3 represent the position and {(n/, n2, n3), (o/, o2, o3), (a/, a2, a3�}, represent the orientation 

of the end- effector, they can be calculated in terms of 
joint angles: 
 n/ � C!C�"C#$% � S!S�" n2 � C!S�"C#$% + C�"S! n3 = C!S#$% o/ � �C�"S!C#$% � S�"C! o2 � �S! S�"C#$% + C�"C! o3 � �S!S#$% a/ � �C�"S#$% a2 � �S�"S#$% a3 � C#$% 

p/ � a$C�"C#C$ � a$C�"S#S$+ S�"d% + a#C�"C# p2 � a$S�"C#C$ � a$S�"S#S$ � C�"d% +  a#S�"C# p3 � a$S#C$ + a$C#S$ + a#S# + d�              (8) 

where, C"#= cos (θ" + θ#�, S"# � sin(θ" + θ#�, C"#$ �cos(θ" + θ# + θ$� and S"#$ = sin(θ" + θ# + θ$� 
 

Making use of some trigonometric equations helps 
for easy solutions: 
 C�" �  C�C" � S�S" S�" �  C�S" +  S�C" C"#$ � C"(C#C$�S#S$� � S"(C$S# + C#S$� S"#$ �  S"(C#C$ � S#S$� + C"(S#C$+C#S$�. 
 

INVERSE KINEMATICS 
 

The solution of Inverse kinematics is more 
complex than forward kinematics and there is many 
solutions approach such as geometric and algebraic 
analysisused for finding the inverse kinematics 
considering the system structure of the robotic arm. In 
case of inverse kinematics the joint angles can be 
determined for any desired position and orientation in 
Cartesian space. For simplicity of solutions to find the 
joint angles of 6d of articulated robot arm of the 
DFROBOT the transformation matrix in Eq. (7) can be 
multiplied by A��� for n = 1,…,6 on both sides of the 
equation sequentially, then solving the produced 
equations obtained by equating terms of the both sides 
of matrices: 

 

A��� = � C� S� 0 0�S� C� 0 00 0 1 �d�0 0 0 1 �                            (9)  

 

A"�� = �C� S" 0 0 0 0 1 0 S" �C" 0 0 0 0 0 1 �             (10)  

 

A#�� = � C# S# 0 �a#�S# C# 0 00 0 1 00 0 0 1 �             (11)  

 

A$�� = � C$ S$ 0 �a$�S$ C$ 0 00 0 1 00 0 0 1 �                                 (12)  

 

A%�� = � C% S% 0 00 0 �1 d%�S% C% 0 00 0 0 1 �                                 (13)  

 

A!�� = � C! S! 0 0 �S! C! 0 00 0 1 00 0 0 1�                          (14)
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INVERSE KINEMATIC SOLUTIONS 
 
To solve the matrix in Eq. (7) it is easy to use the algebraic solution technique for: 

 A!�  = A��A"� A#" A$# A%$ A!%                                                                                                                             (15)  
 
To solve for θi when A!�  is given as numeric values, multiply each side byA���:  
 

A��� ∗ ���
�-n/ o/ a/ p/n2 o2 a2 p2n3 o3 a3 p30 0 0 1 4���

 
 = A��� ∗ A�� ∗ A"� ∗ A#" ∗ A$# ∗ A%$ ∗ A!%                                                                               (16)  

 
The matrix manipulations has resulted the following matrix solutions: 
 

� . . C�a/ + S�a2 C�p/ + S�p2. . �S�ax + C�a2 �S�p/ + C�p2. . a3  p3 � d�0 0 0 1 � � � . . �C"S#$% a$C"C#$ + a#C"C# + S"d%. . �S"S#$% a$S"C#$�a#S"C# � C"d%. . C#$% a$S#$ + a#S#0 0 0 1 �                         (17) 

 

Both matrix elements in Eq. (17) are equated to each other and the resultant θ values are extracted.  

By taking (1, 4) (2, 4): 

 C�p:+S�p2= a$C"C#$ + a# C" C# + S" d%                                                                                                           (18)  

 �S�p/ + C�p2= a$S"C#$ + a#S"C# � C"d%                                                                                                        (19) 

 

Squaring and adding the two Eq. (18) and (19):  

 

C#= Cos θ# = 
;<= > �<?>�@A>�BCDECBE � n 

 

θ# = Cos��n = Atan2 (∓√1 � n", n�                                                                                                                  (20)  

 

Eq. (3, 4): 

 p3 � d� � a$S#$ + a#S# S#$ � a#S# � p3 + d� H$  

θ#$ � Atan2 KLEME�<N�@O BC , ∓;1 � PLEME�<N�@O BC Q"R                                                                   (21) 

 

θ$ � θ#$ � θ#                                                                                                               (22)  

 

Multiplying each side of Eq. (15) withA���A"��: 

 

A��� ∗ A"�� ∗ -n/ o/ a/ p/n2 o2 a2 p2n3 o3 a3 p30 0 0 1 4 �  A#" ∗ A$# ∗ A%$ ∗ A!%                                                                    (23)  

 

���
� . . . C�C"p/ + C�S"p2 + S�p3. . . �S�C"p/ � S�S"p2 + C�p3S"n/ � C"n2 S"o/ � C"o2 . S"p/ � C"p2 � d�0 0 0 1 ���

 � �C!C#$% �S!C#$% �S#$% a$C#$ + a#C#C!S#$% �S!S#$% C#$% a$S#$ + a#S#�S! �C! 0 d%0 0 0 1 �  

                                                                                                                                                                                    (24) 
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Equating elements (3, 4) of the right hand side matrix and the left hand side matrix of Eq. (24): 
 S"p/ � C"p2 � d� �  d% S"p/ � C"p2 �  d� + d% 

θ"= atan2Sp/, �p2T ∓ atan2 (;p/" +  p2" � (d� + d%�", (d� + d%�+                                                                 (25) 

 
From Eq. (8) we can obtain: 
 a/ � �C�"S#$% a2 � �S�"S#$% 

 
Dividing the two equations: 
 MO>UO> = 

L?L= θ�"= atan2 (a2,a/)                                                                                                                           (26) 

 
And then we find: 
 

θ� �  θ�" � θ"                                                                                                                                          (27) 
 
Then also equating elements (3, 1) and (3, 2) of the two sides of the matrices in Eq. (24):  �S! � S"n/ � C"n2 OrS! � C"n2 � S"n/ �C! � S"o/ � C"o2Or C! � C"o2 � S"o/θ! � Atan2VSC"n2 � S"n/T, SC"o2 � S"o/TW                                  (28) 

 
Or alternatively: 
 

θ! � Atan2 K∓;1 � SC�"o2 � S�"o/T" , SC�"o2 � S�"o/TR                                                                               (29) 

 
Now multiply each side of Eq. (15) by: 
 

A��� ∗ A"�� ∗ A#�� ∗ ���
�-n/ o/ a/ p/n2 o2 a2 p2n3 o3 a3 p30 0 0 1 4���

 
 = A$# ∗ A%$ ∗ A!%                                                                    (30) 

 

� C�C"# C�S"# S� �a#C�C"�S�C"# �S�S"# C� a#S�C"S"# �C"# 0 �a#S" � d�0 0 0 1 � × -n/ o/ a/ p/n2 o2 a2 p2n3 o3 a3 p30 0 0 1 4= RHS�C!C$% �S!C$% �S$% a$C$C!S$% �S!S$% C$% a$S$�S! �C! 0 d%0 0 0 1 � = LHS     (31) 

 
Equating elements (3, 4) from the two sides of Eq. (31): 
 S"#p/ � C"#p2 � a#S" � d� �  d% S"#p/ � C"#p2 � a#S" + d� +  d% 

θ"# � atan2 Pp
x
, �p

y
Q ∓ atan2 K;p

x
2 +  p

y
2 � Sa3S2 + d

1
+ d5T2 , (a3S2 + d

1
+ d5�R                                         (32) 

 
θ3 �  θ23 � θ2                                                                       (33)  

 
 From the Eq. in (8) we can also obtain: 
 

C345 � azθ345 � atan2 P∓Y1 � az
2, azQ …                                                                                                           (34)  

 

θ5 � θ345 � θ3 � θ4                                                                                                              (35)  
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Fig. 4: The robot angles  

 

 
Fig. 5: Forward kinematics simulation with the matrices 

A6 and An not shown in diagram 
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Forward kinematics simulation with the matrices 

 
Fig. 6: Inverse kinematic simulation 
 

The developed software will calculate the required 

angles for target orientation and target 

angle values are calculated by using the equations as 

follows: 

 

θ2 �  atan2 Pp
x
, �p

y
Q ∓ atan2 

K;p
x
2 +  p

y
2 � (d1 + d5�

θ12= atan2 (ay,ax) 

θ1 �  θ12 � θ

θ23 � atan2 Pp
x
, �p

y
Q ∓ atan2 

K;p
x
2 +  p

y
2 � Sa3S2 + d

1
+ d5T2

θ3 �  θ23 � θ2 

θ3 = Cos�1n = Atan2 (∓√1 � n

 

where, 

 

n = Cos θ3 = 
;px 2 �py

2�d5
2�H4�34H3

 

 

θ34

� Atan2 -a3S3 � p
z

+ d1 H4

, ∓Z1

θ4 � θ34 � θ

θ345 � atan2 P∓Y1 � az
2, azQ 

θ5 �  θ345 �  θ3
θ6 � Atan2VSC2ny � S2nxT, SC2oy � S2oxT

 

The developed software will calculate the required 

angles for target orientation and target positioning, the 

angle values are calculated by using the equations as 

�2, (d1 + d5�R 

θ2 

 

T2 , (a3S2 + d
1

+ d5�R 

n2, n�, 

Z1 � [a3S3 � p
z

+ d1 H4

\24 

θ3 Q �  θ4 
2 TW 
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RESULTS AND DISCUSSION 

 

Kinematic analysis with mathematical solutions of 

the 6dof DFROBOT was done in this study. With the 

Denavit-Hartenberg method and for a given joint angles 

to be applied as the desired angles for an example 

(45.92, 75.3, 45.92, 20.20, 90, 31.23) in degrees shown 

in Fig. 4, forward and inverse kinematic solutions are 

generated by the developed software with LabVIEW. 

Figure 5 shows the implementations of these angles to 

find the total homogenous transformation matrix which 

contains position and orientation parameters related to 

the motion kinematic of the robot arm. The other 

simulator isthe inverse kinematic part with anew 

analysis technique for the user that use the result 

parameters of equations (8) being solved to obtain the 

new joint angles θ�, θ", θ#, θ$, θ% and θ! for a given 

task of the Robot Arm.  

For any desired joint frame with the position and 

orientation shown in total matrix the inverse kinematic 

nonlinear system solver will be run as shown in Fig. 6. 

 

CONCLUSION 

 

An analytical solution with a newly developed 

system solver for the Kinematics of a 6dof Robot Arm 

from DFROBOT is derived and developed in this study. 

This model gives correct joint angles so that the robot 

arm with its end- effector can easily moved to any 

reachable positions and orientations for performing a 

pick and place task. Less difference is found between 

measured and calculated valued which give an 

exactdesired points in the kinematics simulation 

process. Also this method can be used to solve 

kinematics for other robotics arm. 
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