
Research Journal of Applied Sciences, Engineering and Technology 13(5): 409-415, 2016

DOI:10.19026/rjaset.13.2959

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2016 Maxwell Scientific Publication Corp.

Submitted: April 2, 2016 Accepted: May 23, 2016 Published: September 05, 2016

Corresponding Author: P. Ravichandran, Department of Mechatronics Engineering, Kongu Engineering College, Erode,

Tamilnadu, India, Tel.: +919965998989
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

409

Research Article

A Comparison of Genetic Algorithm and Particle Swarm Optimisation to Minimize the

Makespan for Parallel Line Job Shop Scheduling

P. Ravichandran, K. Krishnamurthy and B. Meenakshipriya

Department of Mechatronics Engineering, Kongu Engineering College, Erode, Tamilnadu, India

Abstract: This paper describes the implementation of Genetic Algorithm (GA) and Particle Swarm Optimization

(PSO) algorithm to minimize the total completion time of jobs called makespan in parallel line Job Shop Scheduling

Problem (PJSSP). PJSSP is one of the scheduling methods in manufacturing industry for increasing plant utilization,

reducing cycle time and to find the optimal allocation of jobs in multiple processing lines. Each job is assigned to a

particular line and the job should be completed only in that assigned line. Also, the job should be processed in a

particular order. PJSSP is always a challenging task in the combinatorial research and it requires a heuristic

approach. Results show that the performance of PSO is superior to GA in order to find optimal solution with

minimum makespan for PJSSP.

Keywords: Genetic Algorithm (GA), makespan, Parallel line Job Shop Scheduling Problem (PJSSP), Particle

Swarm Optimisation (PSO), Processing time, Setup time

INTRODUCTION

In the manufacturing system, scheduling and

planning a production order plays an important role.
The scheduling and planning problems are usually
combinatorial. Scheduling problems are defined as the
process of assigning a set of jobs to resources over a
period of time (Zhang et al., 2013). In recent years,
scheduling problems exist in real world industrial
situations. Performance criteria such as machine
utilization, manufacturing lead times, processing time,
inventory cost and meeting due date, customer
satisfaction and quality of products are dependent on
the efficient way the jobs are scheduled (Tang and Dai,
2015). Hence, it becomes increasingly important to
develop an effective job shop scheduling approach.

A job shop environment consists of ‘n’ jobs and
each job has a given machine route, where some
machines are missed and repeated (Geyik and
Cedimoglu, 2004). A parallel line scheduling problem
has more than one processing line for jobs to be
processed. The processing time of a job is different for
each machine. Each job is assigned to only one
particular line and is processed to complete in that line.
Further, each job enters their respective lines at the
same time and is processed in parallel manner. Thus,
the parallel line job shop scheduling is challenging and
time consuming (Haq et al., 2008). Job Shop
Scheduling (JSS) problem involves a mission of a set of

tasks to the workstations or machines in a particular
sequence. Hence, it requires efficient evolutionary
techniques to overcome the above issues.

During the past years of computational
intelligence, different evolutionary algorithms are
proposed in solving job shop scheduling problems
(Gromicho et al., 2012). These evolutionary algorithms
include Tabu Search method (Solimanpur and Elmi,
2013), Ant Colony Optimisation (Cheng et al., 2013),
Genetic algorithm (Musharavati and Hamouda, 2011),
Particle Swarm Optimisation (Behnamian, 2014) and
Simulated Annealing (Elmi et al., 2011). Kennedy and
Eberhart have proposed better result using Particle
Swarm Optimization (PSO) than different optimization
algorithms. PSO follows a collaborative population-
based search, which models over the social behavior of
bird flocking and fish schooling. PSO has many
advantages over other heuristic techniques such as few
lines of computer code, primitive mathematical
operators, escaping local optima and easily modified.
From earlier studies, it is understood that PSO has not
been implemented for parallel line job shop scheduling
problem. Hence, this work is focused towards the
development of PSO algorithm for parallel line job
shop scheduling by considering the setup time, process
time and the quantity of jobs.

Then, the same parallel line scheduling problem is

solved by the implementation of Genetic algorithm by

considering same set of data. Thus, the obtained results

Res. J. Appl. Sci. Eng. Technol., 13(5): 409-415, 2016

410

Table 1: Setup time matrix (S)

Jobs 1 2 3 4 5 6 7 8 9 10

1 - 6 5 9 11 9 3 10 6 4

2 6 - 2 7 4 6 4 2 2 10
3 4 7 - 4 7 4 9 1 11 9

4 9 11 9 - 12 7 2 6 7 4

5 11 9 7 7 - 11 14 13 3 2
6 3 4 11 14 9 - 7 12 6 8

7 1 12 6 7 7 11 - 11 8 13

8 7 13 14 4 13 9 4 - 14 15
9 8 9 11 8 6 8 8 10 - 8

10 15 5 9 5 6 5 10 6 8 -

are compared with the result of PSO algorithm. The
parallel line scheduling problem was taken as the
empirical data by Haq et al. (2008). They have
implemented the genetic algorithm to solve the parallel
line job shop scheduling without considering the
quantity of jobs. Hence, in this proposed work, GA and
PSO algorithms are designed and implemented for
parallel line job shop scheduling by considering the
quantity of jobs.

MATERIALS AND METHODS

When and where this study was conduct*: Kongu
Engineering College, Erode, India.

Parallel line job shop scheduling problem: There are
totally ‘n’ number of jobs and ‘m’ number of machines
with ‘m’ number of operations in a specific order. Each
operation is allocated to a particular machine with a
fixed processing time and fixed setup time. In the
parallel line job shop scheduling problem, more than
one processing lines are present. Every processing line
has non-identical machines in a specified order. Similar
set of machines with same order is maintained for all
the processing lines. The following are the constraints
for scheduling problem (French, 1982):

• Each job must be processed through each machine
once and only once.

• Each job should be processed through the machine
in a specified order.

• Each operation must be executed uninterrupted on
a given machine.

• Each machine can only handle at most one
operation at a time.

In job shop scheduling problem, the sequence

always follows the most priority rule and technique
(Panneerselvam, 2012). Some of the priority rules are
shortest processing time, first come first serve, most-
work remaining, most operations remaining and least
work remaining and random. The setup time matrix ‘S’
is same for all the lines. After a job is processed, setup
time (S) is necessary when a new job enters in the
processing line and is shown in Table 1. The Process
time matrix ‘P’ shows the processing time for the
different jobs in each processing lines as shown in

Table 2: Processing time matrix (P)

jobs Lines M1 M2 M3

1 1 12 14 16

 2 23 22 10

 3 20 19 11

2 1 16 17 9

 2 13 15 16

 3 15 22 22

3 1 10 25 25

 2 11 21 13

 3 24 21 12

4 1 21 18 17

 2 19 14 8

 3 14 9 17

5 1 19 12 10

 2 11 16 19

 3 11 21 21

6 1 16 22 24

 2 13 17 22

 3 9 23 20

7 1 16 21 10

 2 13 13 18

 3 21 14 12

8 1 22 19 17

 2 7 7 21

 3 12 11 18

9 1 16 21 20

 2 10 23 22

 3 15 21 21

10 1 9 25 20

 2 11 17 21

 3 11 18 16

Table 2. The quantity (Q) of each jobs are shown in

Table 3 (Haq et al., 2008).

Fitness function: The entire performance of proposed

algorithm such as efficiency, convergence speed and

optimisation accuracy depends on the fitness function

which supervises the optimum search of the solution

within the search space.

The fitness function chosen is either to minimize

the preference constrains or to maximize the domain

constrains. The objective of the parallel line job shop

scheduling problem is to minimize the Makespan

(Cmax). The variables are listed as follows:

n : Number of jobs

l : Number of processing lines

m : Number of machines on each processing line

Q : Quantity of each job to be processed

Res. J. Appl. Sci. Eng. Technol., 13(5): 409-415, 2016

411

Table 3: Quantity of each job (Q)

Jobs J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Quantity 54 32 78 61 65 47 29 55 60 72

Pi,j,k: Processing time of each job in with respect to all

machines in each line
Si,j : Setup time of each job with respect to all other

jobs
Ti,j,k : Starting time for each job in each lines

There are ‘n’ jobs J = {J1, J2, J3,……, Jn} to be
processed through ‘m’ machines M = {M1, M2, M3,
…, Mm} each job Ji has ‘m’ operations Oi = {Oi, 1,
Oi,2, Oi,3, …, Oi, m} where i denotes the job number.
According to the taken priority rule technique first
come first served basis, Oi, j must be processed after
Oi,j-1 where j is the job number. The process time
matrix, Pi, j, k, is the processing time for i

th
 job in j

th

machine in processing line ‘k’. Ti, j, k is the starting
time for ith job in jth machine in processing line ‘l’ in
line ‘k’. Quantity of each job is Qi = {Q1, Q2,
Q3……Qq} and Si, j setup time for the jobs which is
equal for all the processing lines. The fitness function is
calculated using the Eq. (1):

Cmax = min (max {Ci,j,k}) (1)

where,

i = 1, 2,… n; j = 1, 2,…. m;
k = 1, 2,… l, Q =1, 2, … q

 0 if j = 1

 Ti,j,k =
 Ci,j-1,k else where

Makespan calculation: Makespan is calculated as the
follows in Eq. (2):

Makespan=Total Processing Time
+Total Setup Time (2)

Processing time is calculated for each job

separately. For example, the processing time of Job1 in
Line 1 is calculated using the Eq. (3).

(Processing Time)J1 = Total quantity of Job1 *
Processing time of Job1
in all machines of Line1 (3)

Similarly the processing times for all jobs in all

lines are calculated. Now, the total processing time of
all jobs in a line is calculated by adding the individual
processing times of all jobs in that line as shown in Eq.
(4). For example, if J1, J2 and J3 are in line1, then:

The total processing time of all jobs

in line1 = (Processing Time)J1
+(Processing Time)J2+(Processing Time)J3 (4)

Finally, the respective set up times of the jobs is

added to the processing time of that line and it is called
as makespan of that line. Similarly makespan of all
lines are calculated. In which, the largest makespan is
taken as the makespan of the entire process.

METHODS

Genetic algorithm: Genetic Algorithm (GA) is one of

the non-conventional optimisation techniques to solve

combinatorial problem. It focuses on the principle of

survival of the fittest. It resembles the behaviour of

natural evaluation and genetics. Genetic algorithm is

applicable to real world problems, if they are suitably

encoded. Generally, fitness function is used to evaluate

the genome. Genome has ‘N’ number of individual

chromosome known as population size. After this, the

fitness evaluation chromosomes pass through the

reproduction phase. Then the crossover and mutation

are applied to produce new population. In the

reproduction phase, elimination of weak chromosomes

is done and fitted chromosomes are retained for the

next generation.

Chromosome representation in GA: Chromosome

representation can be used for all the individual

genomes in the genetic algorithm. Each individual

chromosome gives a complete solution to the problem

for the optimisation to carry out. Initial population is

generated randomly using permutation of job. Figure 1

shows an example of chromosome in a Genome.

The following parameters are used for parallel line

job shop scheduling problem:

(i) Number of jobs (n) = 10

(ii) Number of processing lines (l) = 3

(iii) Number of machines in each line (m) = 3

(iv) Population size = 100

Selection: The selection operator is responsible for a
chromosome to migrate from the current generation of
population to the next generation population growth.
Before making it into the next generation’s population,
selected chromosomes undergo crossover and/or
mutation phase. The new offspring chromosome (s) are
produced to the next generation’s population. In earlier
studies Roulette wheel is widely used selection
operator.

Crossover: Crossover is used to produce new

offspring. Crossover probability determines the number

of cross over operation. There are many different kinds

Res. J. Appl. Sci. Eng. Technol., 13(5): 409-415, 2016

412

Fig. 1: Chromosome representation of sequence

of crossover and the most common type is single point
crossover. In single point crossover, first choose a
locus, then decide from that point, where swapping
operation going to perform from one parent to the other.
It was noted that, children take one section of the
chromosome from each parent. The point at which the
chromosome is broken depends on the randomly
selected crossover point. From the earlier analysis,
crossover probability gives good solution in the range
of 0.7 to 0.9.

Pseudo-code of GA:
Input: PLJSSP data sheet, GA parameters
Output: A near optimal schedule, minimum makes pan

Begin
 Initialize
a) Initialize the GA parameters:
 Population size (n), iteration number (Iter),
 Cross over probability (Pc), mutation

probability (Pm);
b) Initialize population of ‘n’ chromosomes by

randomly sequencing genes;
Compute the fitness function for all ‘n’

chromosomes;
Repeat (outer loop: evolve population)

Repeat (inner loop: generate new individuals)
Select two parent chromosomes
Apply crossover
Apply mutation

Until ‘n’ new individuals are generated
Select ‘n’ elite members for the next generation
Evaluate fitness function;

Until termination conditions are reached;
Output a near optimal schedule and makespan;

End

Mutation: Mutation operation used to produce
randomness in the search space. Mutation is performed
with in particular chromosome. Mutation probability
determines number of mutation operation in
reproduction. Typically the range of mutation
probability is 0.001 to 0.1. For this problem, the
mutation probability is taken as 0.01.

Particle Swarm Optimisation Algorithm (PSO):
PSO is used for continuous solving of combinatorial
optimisation problem due to the discrete nature of job
shop scheduling problem. Smallest position value rule
is applied to convert continuous PSO into Discrete
PSO, borrowed from random key genetic algorithm.
Each particle moves around a ‘D’ dimensional space
with the velocity. Each iteration this velocity is updated

and the corresponding position also calculated with the
help of velocity. In this process, initial swarm position
is determined randomly.

The continuous position values are generated and
updated by the following Eq. (5):

Positioni,j = Positionmin

+(Positionmax-Positionmin)*R1 (5)

where,
Positionmin = 0.0
Positionmax = 4.0
R1 = A uniform random number in between 0 to 1

Initial velocity of the particles also generated and
updated by the equation 6,

Velocityi,j= Velocitymin+
(Velocitymax-Velocitymin)*R2 (6)

where,
Velocitymin = -4.0
Velocity max = +4.0
R2 is a uniform random number in between 0 to 1

The velocity range is one of the constraints in PSO
which ranges from -4 to +4. After the initial velocity
and position, it is updated for each iteration as given by
the Eq. (7) and (8):

Velocityi,j = W*Velocityi,j+C1*R1*
(Pbesti,j-Positioni,j)+C2*R2*(Gbesti,j-Positioni,j) (7)

Positioni,j= Velocityi,j+Positioni,j (8)

where,

W =Wmax–iteration *
(Wmax-Wmin)/Max iteration

where ‘W’ = inertia weight ranges from Wmax to
Wmin (1 to 0.2). Initially inertia weight is high, but it
gradually decreased from Wmax to Wmin when
iterations go on. In the velocity update equation, ‘W’ is
the only variable to control. C1 is a self-learning factor
equal to 2, which is how much a particle can believe its
own best fitness Pbest. C2 is a social-learning factor
equal to 2, which is how much a particle can trust
Gbest. R1 and R2 is a uniform random numbers in
between 0 to 1. Each particle records its own best
position as Personal best (Pbest). Best of Pbest is taken
as Global best (Gbest).

Res. J. Appl. Sci. Eng. Technol., 13(5): 409-415, 2016

413

Pseudo-code of PSO:

Initialize parameters

Initialize velocity

Initialize position

Find permutation of jobs

Evaluate fitness of all particles

Do

{

Find position best

Find global best

Update velocity

Update position

Find permutation of jobs

Evaluate fitness of all particles

Local search to find optimal solution

} While (until termination)

Smallest position value Rule: Smallest Position Value

rule (SPV) is used to obtain the sequence of jobs from

corresponding position values (Bean, 1994). According

to SPV rule, the position value is sorted in ascending

order. Then the corresponding position value index is

fixed from the representation job sequence. The above

sequence is shown in Table 4.

The example of sequence of ‘n’ jobs as per SPV

rule is shown in Fig. 2. First four jobs go to processing

line1, next three jobs goes to processing line2,

remaining 3 jobs goes to processing line3. Each

processing line gives makespan for corresponding job

sequence. Highest value from the three processing line

is the makespan of the particle. By this way, makespan

is calculated for all the particles in the swarm.

Local search for PSO: Local search is used to

intensify the search towards optimal or near optimal

solution. In the proposed work, Variable Neighborhood

Search (VNS) is used (Tasgetiren et al., 2007). Two

operations involved in VNS are insert and interchange.

Table 4: SPV Rules to represent job

Position index 1 2 3 4 5 6

Position value 3.5 2.8 0.74 3.9 1.62 0.59
Job sequence 6 3 5 2 1 4

Table 5: Insert operation in VNS

Position index 1 2 3 4 5 6

Sequence before insert 6 3 5 2 1 4
After insert 6 5 2 1 3 4

Table 6: Interchange operation in VNS

Position index 1 2 3 4 5 6

Sequence before interchange 6 5 2 1 3 4
After interchange 6 3 2 1 5 4

Table 7: Comparative makespan results of GA and PSO algorithms

Iteration No. No. of Jobs No. of achines No. of Lines

GA

PSO

Makespan
Sequence
obtained Makespan

Sequence
obtained

1 10 3 3 3955 6-7-5-1
8-10-4
9-2-3

3911 9-5-2-1
8-4-10
6-3-7

25 10 3 3 3874 5-2-7-10
1-6-9
4-3-8

3662 7-1-4-5
2-6-3
9-8-10

50 10 3 3 3766 1-5-7-8
10-3-2
4-9-6

3463 1-6-5-2
7-4-3
10-8-9

75 10 3 3 3525 6-5-7-1
2-3-4
9-8-10

3459 5-2-1-6
4-3-7
8-9-10

100 10 3 3 3473 2-1-6-5
7-3-4
8-9-10

3459 5-2-1-6
4-3-7
8-9-10

125 10 3 3 3473 2-1-6-5
7-3-4
8-9-10

3459 5-2-1-6
4-3-7
8-9-10

Table 8: Best sequence and makespan of GA and PSO

Optimisation algorithm Best sequence Best Makespan

GA Processing line 1 2-1-6-5 3473
 Processing line 2 7-3-4
 Processing line 3 8-9-10
PSO Processing line 1 5-2-1-6 3459
 Processing line 2 4-3-7
 Processing line 3 8-9-10

Res. J. Appl. Sci. Eng. Technol., 13(5): 409-415, 2016

414

Fig. 2: Assignment of jobs in processing line

Fig. 3: Performance of GA and PSO algorithms

Local search is not used in continuous position values,

for permutation of jobs kind of problem which is very

useful. In insert operation, two random numbers (N1,

N2) are generated and are not equal. The position of

first generated number is removed and reinserted in the

second generated random number (e.g., N1 = 2, N2 = 5)

(Table 5).

In interchange operation, generated random

numbers, N1 and N2, which are not equal and are

swapped (Table 6).

RESULTS AND DISCUSSION

The comparative Makespan results of GA and PSO

for parallel line job shop scheduling problem is given in

Table 7 and the performance for each iteration are

shown in Fig. 3.

Basically GA is a local search algorithm and PSO

is a local search algorithm. To improve the local search

ability of PSO algorithm, VNS technique is

implemented with basic PSO algorithm. Due to which,

for every iteration of the algorithm, PSO performed

with both global and local search ability. In Fig. 3 it is

shown that when the iteration increases, convergence

leads to the best solution. At the same time, by

considering the quantity of jobs, the results shown the

best sequence for parallel line job shop problem.

CONCLUSION

In the proposed work, an approach based on

comparison of Genetic Algorithm and Particle Swarm

Optimisation for solving parallel line job scheduling

problem was presented. The results shows that when

quantity of jobs considered in an account then the

optimisation algorithms gives best solutions for parallel

line job shop scheduling for each of the given

processing lines. It is applied and executed to any

number of lines, jobs and machines. The best solution

gives the minimum makespan for the parallel line job

shop scheduling and the sequence corresponding to the

minimum makespan. The results obtained by the

proposed algorithms are given in Table 8. The

difference in time units is 14 in between GA and PSO.

The results reveals that the Particle Swarm

Optimisation (PSO) techniques provides best optimal

solution to select the job sequence for reducing the

Makespan by considering the quantity of jobs for

parallel line job shop scheduling.

REFERENCES

Bean, J.C., 1994. Genetic algorithms and random keys

for sequencing and optimization. ORSA J.

Comput., 6(2): 154-160.

Behnamian, J., 2014. Particle swarm optimization-

based algorithm for fuzzy parallel machine

scheduling. Int. J. Adv. Manuf. Tech., 75(5): 883-

895.

Cheng, B., Q. Wang, S. Yang and X. Hu, 2013. An

improved ant colony optimization for scheduling

identical parallel batching machines with arbitrary

job sizes. Appl. Soft Comput., 13(2): 765-772.

Elmi, A., M. Solimanpur, S. Topaloglu and A. Elmi,

2011. A simulated annealing algorithm for the job

shop cell scheduling problem with intercellular

moves and reentrant parts. Comput. Ind. Eng.,

61(1): 171-178.

French, S., 1982. Sequencing and Scheduling: An

Introduction to the Mathematics of the Job-Shop.

John Willey and Sons Inc., New York, USA.

Geyik, F. and I.H. Cedimoglu, 2004. The strategies and

parameters of tabu search for job-shop scheduling.

J. Intell. Manuf., 15(4): 439-448.

Gromicho, J.A.S., J.J. Van Hoorn, F. Saldanha-da-

Gama and G.T. Timmer, 2012. Solving the job-

shop scheduling problem optimally by dynamic

programming. Comput. Oper. Res., 39(12): 2968-

2977.

Haq, A.N., K. Balasubramanian, B. Sashidharan and

R.B. Karthick, 2008. Parallel line job shop

scheduling using genetic algorithm. Int. J. Adv.

Manuf. Tech., 35(9): 1047-1052.

Musharavati, F. and A.S.M. Hamouda, 2011. Modified

genetic algorithms for manufacturing process

planning in multiple parts manufacturing lines.

Expert Syst. Appl., 38(9): 10770-10779.

4000

3900

3800

3700

3600

3500

3400

0 20 40 60 80 100 120 140

No of iterations

M
a
k
e
sp
a
n

GA

PSO

Res. J. Appl. Sci. Eng. Technol., 13(5): 409-415, 2016

415

Panneerselvam, R., 2012. Production and Operations

Management. 3rd Edn., PHI Learning Pvt. Ltd.,

New Delhi.

Solimanpur, M. and A. Elmi, 2013. A tabu search

approach for cell scheduling problem with

makespan criterion. Int. J. Prod. Econ., 141(2):

639-645.

Tang, D. and M. Dai, 2015. Energy-efficient approach

to minimizing the energy consumption in an

extended job-shop scheduling problem. Chin. J.

Mech. Eng., 28(5): 1048-1055.

Tasgetiren, M.F., Y.C. Liang, M. Sevkli and G.

Gencyilmaz, 2007. A particle swarm optimization

algorithm for makespan and total flowtime

minimization in the permutation flowshop

sequencing problem. Eur. J. Oper. Res., 177(3):

1930-1947.

Zhang, L., L. Gao and X. Li, 2013. A hybrid intelligent

algorithm and rescheduling technique for job shop

scheduling problems with disruptions. Int. J. Adv.

Manuf. Tech., 65(5): 1141-1156.

