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Abstract: This paper describes the implementation of Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO) algorithm to minimize the total completion time of jobs called makespan in parallel line Job Shop Scheduling 

Problem (PJSSP). PJSSP is one of the scheduling methods in manufacturing industry for increasing plant utilization, 

reducing cycle time and to find the optimal allocation of jobs in multiple processing lines. Each job is assigned to a 

particular line and the job should be completed only in that assigned line. Also, the job should be processed in a 

particular order. PJSSP is always a challenging task in the combinatorial research and it requires a heuristic 

approach. Results show that the performance of PSO is superior to GA in order to find optimal solution with 

minimum makespan for PJSSP. 
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INTRODUCTION 

 
In the manufacturing system, scheduling and 

planning a production order plays an important role. 
The scheduling and planning problems are usually 
combinatorial. Scheduling problems are defined as the 
process of assigning a set of jobs to resources over a 
period of time (Zhang et al., 2013). In recent years, 
scheduling problems exist in real world industrial 
situations. Performance criteria such as machine 
utilization, manufacturing lead times, processing time, 
inventory cost and meeting due date, customer 
satisfaction and quality of products are dependent on 
the efficient way the jobs are scheduled (Tang and Dai, 
2015). Hence, it becomes increasingly important to 
develop an effective job shop scheduling approach.   

A job shop environment consists of ‘n’ jobs and 
each job has a given machine route, where some 
machines are missed and repeated (Geyik and 
Cedimoglu, 2004). A parallel line scheduling problem 
has more than one processing line for jobs to be 
processed. The processing time of a job is different for 
each machine. Each job is assigned to only one 
particular line and is processed to complete in that line. 
Further, each job enters their respective lines at the 
same time and is processed in parallel manner. Thus, 
the parallel line job shop scheduling is challenging and 
time consuming (Haq et al., 2008). Job Shop 
Scheduling (JSS) problem involves a mission of a set of 

tasks to the workstations or machines in a particular 
sequence. Hence, it requires efficient evolutionary 
techniques to overcome the above issues. 

During the past years of computational 
intelligence, different evolutionary algorithms are 
proposed in solving job shop scheduling problems 
(Gromicho et al., 2012). These evolutionary algorithms 
include Tabu Search method (Solimanpur and Elmi, 
2013), Ant Colony Optimisation (Cheng et al., 2013), 
Genetic algorithm (Musharavati and Hamouda, 2011), 
Particle Swarm Optimisation (Behnamian, 2014) and 
Simulated Annealing (Elmi et al., 2011). Kennedy and 
Eberhart have proposed better result using Particle 
Swarm Optimization (PSO) than different optimization 
algorithms. PSO follows a collaborative population-
based search, which models over the social behavior of 
bird flocking and fish schooling. PSO has many 
advantages over other heuristic techniques such as few 
lines of computer code, primitive mathematical 
operators, escaping local optima and easily modified. 
From earlier studies, it is understood that PSO has not 
been implemented for parallel line job shop scheduling 
problem. Hence, this work is focused towards the 
development of PSO algorithm for parallel line job 
shop scheduling by considering the setup time, process 
time and the quantity of jobs. 

Then, the same parallel line scheduling problem is 

solved by the implementation of Genetic algorithm by 

considering same set of data. Thus, the obtained  results  
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Table 1: Setup time matrix (S) 

Jobs 1 2 3 4 5 6 7 8 9 10 

1 - 6 5 9 11 9 3 10 6 4 

2 6 - 2 7 4 6 4 2 2 10 
3 4 7 - 4 7 4 9 1 11 9 

4 9 11 9 - 12 7 2 6 7 4 

5 11 9 7 7 - 11 14 13 3 2 
6 3 4 11 14 9 - 7 12 6 8 

7 1 12 6 7 7 11 - 11 8 13 

8 7 13 14 4 13 9 4 - 14 15 
9 8 9 11 8 6 8 8 10 - 8 

10 15 5 9 5 6 5 10 6 8 - 

 
are compared with the result of PSO algorithm. The 
parallel line scheduling problem was taken as the 
empirical data by Haq et al. (2008). They have 
implemented the genetic algorithm to solve the parallel 
line job shop scheduling without considering the 
quantity of jobs. Hence, in this proposed work, GA and 
PSO algorithms are designed and implemented for 
parallel line job shop scheduling by considering the 
quantity of jobs. 
 

MATERIALS AND METHODS 
 

When and where this study was conduct*: Kongu 
Engineering College, Erode, India. 
 
Parallel line job shop scheduling problem: There are 
totally ‘n’ number of jobs and ‘m’ number of machines 
with ‘m’ number of operations in a specific order. Each 
operation is allocated to a particular machine with a 
fixed processing time and fixed setup time. In the 
parallel line job shop scheduling problem, more than 
one processing lines are present. Every processing line 
has non-identical machines in a specified order. Similar 
set of machines with same order is maintained for all 
the processing lines. The following are the constraints 
for scheduling problem (French, 1982): 

 

• Each job must be processed through each machine 
once and only once. 

• Each job should be processed through the machine 
in a specified order. 

• Each operation must be executed uninterrupted on 
a given machine. 

• Each machine can only handle at most one 
operation at a time. 

 
In job shop scheduling problem, the sequence 

always follows the most priority rule and technique 
(Panneerselvam, 2012). Some of the priority rules are 
shortest processing time, first come first serve, most-
work remaining, most operations remaining and least 
work remaining and random. The setup time matrix ‘S’ 
is same for all the lines. After a job is processed, setup 
time (S) is necessary when a new job enters in the 
processing line and is shown in Table 1. The Process 
time matrix ‘P’ shows the processing time for the 
different jobs  in  each   processing   lines  as  shown  in  

Table 2: Processing time matrix (P) 

jobs Lines M1 M2 M3 

1 1 12 14 16 

 2 23 22 10 

 3 20 19 11 

2 1 16 17 9 

 2 13 15 16 

 3 15 22 22 

3 1 10 25 25 

 2 11 21 13 

 3 24 21 12 

4 1 21 18 17 

 2 19 14 8 

 3 14 9 17 

5 1 19 12 10 

 2 11 16 19 

 3 11 21 21 

6 1 16 22 24 

 2 13 17 22 

 3 9 23 20 

7 1 16 21 10 

 2 13 13 18 

 3 21 14 12 

8 1 22 19 17 

 2 7 7 21 

 3 12 11 18 

9 1 16 21 20 

 2 10 23 22 

 3 15 21 21 

10 1 9 25 20 

 2 11 17 21 

 3 11 18 16 

 

Table 2. The quantity (Q) of each jobs are shown in 

Table 3 (Haq et al., 2008). 

 

Fitness function: The entire performance of proposed 

algorithm such as efficiency, convergence speed and 

optimisation accuracy depends on the fitness function 

which supervises the optimum search of the solution 

within the search space. 

The fitness function chosen is either to minimize 

the preference constrains or to maximize the domain 

constrains. The objective of the parallel line job shop 

scheduling problem is to minimize the Makespan 

(Cmax). The variables are listed as follows: 

 

n : Number of  jobs   

l : Number of  processing lines 

m : Number of machines on each processing line 

Q : Quantity of each job to be processed   
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Table 3: Quantity of each job (Q) 

Jobs J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 

Quantity 54 32 78 61 65 47 29 55 60 72 

 
Pi,j,k: Processing time of each job in with respect to all 

machines in each line 
Si,j : Setup time of each job with respect to all other 

jobs 
Ti,j,k : Starting time for each job in each lines 
 

There are ‘n’ jobs J = {J1, J2, J3,……, Jn} to be 
processed through ‘m’ machines M = {M1, M2, M3, 
…, Mm} each job Ji has ‘m’ operations Oi = {Oi, 1, 
Oi,2, Oi,3, …, Oi, m} where i denotes the job number. 
According to the taken priority rule technique first 
come first served basis, Oi, j must be processed after 
Oi,j-1 where j is the job number. The process time 
matrix, Pi, j, k, is the processing time for i

th
 job in j

th
 

machine in processing line ‘k’. Ti, j, k is the starting 
time for ith job in jth machine in processing line ‘l’ in 
line ‘k’. Quantity of each job is Qi = {Q1, Q2, 
Q3……Qq} and Si, j setup time for the jobs which is 
equal for all the processing lines. The fitness function is 
calculated using the Eq. (1): 
 

Cmax = min (max {Ci,j,k})               (1) 
 

where, 
 

 
 

i = 1, 2,… n;  j = 1, 2,…. m;   
k = 1, 2,… l,  Q =1, 2, … q 

 
        0 if j = 1 

 Ti,j,k  =    
        Ci,j-1,k  else where 

 
Makespan calculation: Makespan is calculated as the 
follows in Eq. (2): 
 

Makespan=Total Processing Time  
+Total Setup Time                                           (2) 

 
Processing time is calculated for each job 

separately. For example, the processing time of Job1 in 
Line 1 is calculated using the Eq. (3). 

 
(Processing Time)J1 = Total quantity of Job1 * 
Processing time of Job1 
in all machines of Line1                                       (3) 
 
Similarly the processing times for all jobs in all 

lines are calculated. Now, the total processing time of 
all jobs in a line is calculated by adding the individual 
processing times of all jobs in that line as shown in Eq. 
(4). For example, if J1, J2 and J3 are in line1, then:  
 

The total processing time of all jobs  

in line1 = (Processing Time)J1 
+(Processing Time)J2+(Processing Time)J3               (4) 
 
Finally, the respective set up times of the jobs is 

added to the processing time of that line and it is called 
as makespan of that line. Similarly makespan of all 
lines are calculated. In which, the largest makespan is 
taken as the makespan of the entire process. 
 

METHODS 
 
Genetic algorithm: Genetic Algorithm (GA) is one of 

the non-conventional optimisation techniques to solve 

combinatorial problem. It focuses on the principle of 

survival of the fittest. It resembles the behaviour of 

natural evaluation and genetics. Genetic algorithm is 

applicable to real world problems, if they are suitably 

encoded. Generally, fitness function is used to evaluate 

the genome. Genome has ‘N’ number of individual 

chromosome known as population size. After this, the 

fitness evaluation chromosomes pass through the 

reproduction phase. Then the crossover and mutation 

are applied to produce new population. In the 

reproduction phase, elimination of weak chromosomes 

is done and fitted chromosomes are retained for the 

next generation.  

 

Chromosome representation in GA: Chromosome 

representation can be used for all the individual 

genomes in the genetic algorithm. Each individual 

chromosome gives a complete solution to the problem 

for the optimisation to carry out. Initial population is 

generated randomly using permutation of job. Figure 1 

shows an example of chromosome in a Genome. 

The following parameters are used for parallel line 

job shop scheduling problem: 

 

(i) Number of jobs (n) = 10 

(ii) Number of processing lines (l) = 3 

(iii) Number of machines in each line (m) = 3 

(iv) Population size = 100 
 
Selection: The selection operator is responsible for a 
chromosome to migrate from the current generation of 
population to the next generation population growth. 
Before making it into the next generation’s population, 
selected chromosomes undergo crossover and/or 
mutation phase. The new offspring chromosome (s) are 
produced to the next generation’s population. In earlier 
studies Roulette wheel is widely used selection 
operator. 
 

Crossover: Crossover is used to produce new 

offspring. Crossover probability determines the number 

of cross over operation. There are many different kinds
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Fig. 1: Chromosome representation of sequence 

 
of crossover and the most common type is single point 
crossover. In single point crossover, first choose a 
locus, then decide from that point, where swapping 
operation going to perform from one parent to the other. 
It was noted that, children take one section of the 
chromosome from each parent. The point at which the 
chromosome is broken depends on the randomly 
selected crossover point. From the earlier analysis, 
crossover probability gives good solution in the range 
of 0.7 to 0.9. 

 

Pseudo-code of GA: 
Input: PLJSSP data sheet, GA parameters 
Output: A near optimal schedule, minimum makes pan 

Begin 
 Initialize 
a) Initialize the GA parameters:  
 Population size (n), iteration number (Iter), 
 Cross over probability (Pc), mutation 

probability (Pm); 
b) Initialize population of ‘n’ chromosomes by 

randomly sequencing genes; 
Compute the fitness function for all ‘n’    

chromosomes; 
Repeat (outer loop: evolve population) 

Repeat (inner loop: generate new individuals) 
Select two parent chromosomes  
Apply crossover 
Apply mutation 

Until ‘n’ new individuals are generated 
Select ‘n’ elite members for the next generation 
Evaluate fitness function; 

Until termination conditions are reached; 
Output a near optimal schedule and makespan; 

End 
 
Mutation: Mutation operation used to produce 
randomness in the search space. Mutation is performed 
with in particular chromosome. Mutation probability 
determines number of mutation operation in 
reproduction. Typically the range of mutation 
probability is 0.001 to 0.1. For this problem, the 
mutation probability is taken as 0.01. 
 

Particle Swarm Optimisation Algorithm (PSO):  
PSO is used for continuous solving of combinatorial 
optimisation problem due to the discrete nature of job 
shop scheduling problem. Smallest position value rule 
is applied to convert continuous PSO into Discrete 
PSO, borrowed from random key genetic algorithm. 
Each particle moves around a ‘D’ dimensional space 
with the velocity. Each iteration this velocity is updated 

and the corresponding position also calculated with the 
help of velocity. In this process, initial swarm position 
is determined randomly. 

The continuous position values are generated and 
updated by the following Eq. (5): 

 
Positioni,j = Positionmin 

+(Positionmax-Positionmin)*R1                                               (5) 
 
where, 
Positionmin = 0.0  
Positionmax = 4.0  
R1 = A uniform random number in between 0 to 1 
 

Initial velocity of the particles also generated and 
updated by the equation 6,  

 
Velocityi,j= Velocitymin+ 
(Velocitymax-Velocitymin)*R2                                                 (6) 

 
where, 
Velocitymin = -4.0 
Velocity max = +4.0  
R2 is a uniform random number in between 0 to 1 
 

The velocity range is one of the constraints in PSO 
which ranges from -4 to +4. After the initial velocity 
and position, it is updated for each iteration as given by 
the Eq. (7) and (8): 
 

Velocityi,j = W*Velocityi,j+C1*R1* 
(Pbesti,j-Positioni,j)+C2*R2*(Gbesti,j-Positioni,j)   (7) 

 
Positioni,j= Velocityi,j+Positioni,j              (8) 

 
where, 
 

W =Wmax–iteration *  
(Wmax-Wmin)/Max iteration 

 
where ‘W’ = inertia weight ranges from Wmax to 
Wmin (1 to 0.2). Initially inertia weight is high, but it 
gradually decreased from Wmax to Wmin when 
iterations go on. In the velocity update equation, ‘W’ is 
the only variable to control. C1 is a self-learning factor 
equal to 2, which is how much a particle can believe its 
own best fitness Pbest. C2 is a social-learning factor 
equal to 2, which is how much a particle can trust 
Gbest. R1 and R2 is a uniform random numbers in 
between 0 to 1. Each particle records its own best 
position as Personal best (Pbest). Best of Pbest is taken 
as Global best (Gbest). 
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Pseudo-code of PSO: 

Initialize parameters 

Initialize velocity 

Initialize position 

Find permutation of jobs 

Evaluate fitness of all particles 

Do 

{ 

Find position best 

Find global best 

Update velocity 

Update position 

Find permutation of jobs 

Evaluate fitness of all particles 

Local search to find optimal solution 

} While (until termination) 

 

Smallest position value Rule: Smallest Position Value 

rule (SPV) is used to obtain the sequence of jobs from 

corresponding position values (Bean, 1994). According 

to SPV rule, the position value is sorted in ascending 

order. Then the corresponding position value index is 

fixed from the representation job sequence. The above 

sequence is shown in Table 4. 

The example of sequence of ‘n’ jobs as per SPV 

rule is shown in Fig. 2.  First four jobs go to processing 

line1, next three jobs goes to processing line2, 

remaining 3 jobs goes to processing line3. Each 

processing line gives makespan for corresponding job 

sequence. Highest value from the three processing line 

is the makespan of the particle. By this way, makespan 

is calculated for all the particles in the swarm. 

 

Local search for PSO: Local search is used to 

intensify the search towards optimal or near optimal 

solution. In the proposed work, Variable Neighborhood 

Search (VNS) is used (Tasgetiren et al., 2007). Two 

operations involved in VNS are insert and interchange. 
 
Table 4: SPV Rules to represent job 

Position index  1 2 3 4 5 6 

Position value 3.5 2.8 0.74 3.9 1.62 0.59 
Job sequence 6 3 5 2 1 4 

 
Table 5: Insert operation in VNS 

Position index 1 2 3 4 5 6 

Sequence before insert 6 3 5 2 1 4 
After insert 6 5 2 1 3 4 

 
Table 6: Interchange operation in VNS 

Position index 1 2 3 4 5 6 

Sequence before interchange 6 5 2 1 3 4 
After interchange 6 3 2 1 5 4 

 
Table 7: Comparative makespan results of GA and PSO algorithms 

Iteration No. No. of Jobs No. of achines No. of Lines 

GA 
----------------------------------------- 

PSO 
-------------------------------------------

Makespan 
Sequence 
obtained Makespan 

Sequence 
obtained 

1 10 3 3 3955 6-7-5-1 
8-10-4 
9-2-3 

3911 9-5-2-1 
8-4-10 
6-3-7 

25 10 3 3 3874 5-2-7-10 
1-6-9 
4-3-8 

3662 7-1-4-5 
2-6-3 
9-8-10 

50 10 3 3 3766 1-5-7-8 
10-3-2 
4-9-6 

3463 1-6-5-2 
7-4-3 
10-8-9 

75 10 3 3 3525 6-5-7-1 
2-3-4 
9-8-10 

3459 5-2-1-6 
4-3-7 
8-9-10 

100 10 3 3 3473 2-1-6-5 
7-3-4 
8-9-10 

3459 5-2-1-6 
4-3-7 
8-9-10 

125 10 3 3 3473 2-1-6-5 
7-3-4 
8-9-10 

3459 5-2-1-6 
4-3-7 
8-9-10 

 
Table 8: Best sequence and makespan of GA and PSO 

Optimisation algorithm Best sequence Best Makespan 

GA Processing line 1 2-1-6-5 3473 
 Processing line 2 7-3-4  
 Processing line 3 8-9-10  
PSO Processing line 1 5-2-1-6 3459 
 Processing line 2 4-3-7  
 Processing line 3 8-9-10  



 

 

Res. J. Appl. Sci. Eng. Technol., 13(5): 409-415, 2016 

 

414 

 
 

Fig. 2: Assignment of jobs in processing line 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3: Performance of GA and PSO algorithms 

 

Local search is not used in continuous position values, 

for permutation of jobs kind of problem which is very 

useful. In insert operation, two random numbers (N1, 

N2) are generated and are not equal. The position of 

first generated number is removed and reinserted in the 

second generated random number (e.g., N1 = 2, N2 = 5) 

(Table 5). 

In interchange operation, generated random 

numbers, N1 and N2, which are not equal and are 

swapped (Table 6). 

 

RESULTS AND DISCUSSION 

 

The comparative Makespan results of GA and PSO 

for parallel line job shop scheduling problem is given in 

Table 7 and the performance for each iteration are 

shown in Fig. 3. 

Basically GA is a local search algorithm and PSO 

is a local search algorithm. To improve the local search 

ability of PSO algorithm, VNS technique is 

implemented with basic PSO algorithm. Due to which, 

for every iteration of the algorithm, PSO performed 

with both global and local search ability. In Fig. 3 it is 

shown that when the iteration increases, convergence 

leads to the best solution. At the same time, by 

considering the quantity of jobs, the results shown the 

best sequence for parallel line job shop problem. 

 

CONCLUSION 

 

In the proposed work, an approach based on 

comparison of Genetic Algorithm and Particle Swarm 

Optimisation for solving parallel line job scheduling 

problem was presented. The results shows that when 

quantity of jobs considered in an account then the 

optimisation algorithms gives best solutions for parallel 

line job shop scheduling for each of the given 

processing lines. It is applied and executed to any 

number of lines, jobs and machines. The best solution 

gives the minimum makespan for the parallel line job 

shop scheduling and the sequence corresponding to the 

minimum makespan. The results obtained by the 

proposed algorithms are given in Table 8. The 

difference in time units is 14 in between GA and PSO. 

The results reveals that the Particle Swarm 

Optimisation (PSO) techniques provides best optimal 

solution to select the job sequence for reducing the 

Makespan by considering the quantity of jobs for 

parallel line job shop scheduling. 
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