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Abstract: This study addresses the issue of estimating mental efforts during a learning task based on brain signal 

measurements. The aim of this study is to describe how a Brain-Computer Interface (BCI) can be used as a direct 

communication tool between the human brain and a machine in the context of learning. Such devices are based on 

analyzing the electrical brain activity measurements using different brain exploration technics. In this study we 

describe an offline method to highlight effects of changing difficulty levels of a learning task on the prefrontal brain 

area status. Based on a single ElectroEncephaloGraphic (EEG) channel and using the Fisher-Snedecor test our 

proposed algorithm describes changes of Delta (0.5-3Hz), Theta (4-7Hz) and Alpha (8-11Hz) band powers. By 

using the Kappa coefficients, to assess the agreement rate between the algorithm decisions and those made by an 

expert, experimental results show a rate of 62% of agreement. This reflects the efficiency of the proposed method in 

distinguishing effects of difficulty levels of a learning task on the prefrontal brain area. 
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INTRODUCTION 

 
Electroencephalography is an emergent technique 

allowing detection of the electrical brain activity 
resulting from the neurons functioning. The signal is 
recorded by placing electrodes on the scalp. Signals 
resulting from the brain activity are called 
Electroencephalograph. These signals are periodic and 
vary according to the brain activity. The 
electroencephalography discovery has given rise to new 
research areas such as Brain-Computer Interfaces, 
which are considered as new systems of direct 
communication between the brain and external devices 
such  as  computers  or  any  electronic device (Wolpaw 
et al., 2002; Bell et al., 2008; Yasui, 2009). These 
systems can be designed to assist, improve, or repair 
functions of human cognition. Furthermore, BCI 
systems can be infinitely useful for people suffering 
from heavy motor disabilities (Farwell and Donchin, 
1988). The application of this research field ranges 
from assistance for disabled people to the use in the 
video games field (Pires et al., 2012; Leeb et al., 2013). 
These communication and control systems do not 
depend on the standard brain neuromuscular outputs. 
The intention of the user is mediated by the brain 
signals instead of nerves and muscles. Currently, BCI 
systems are in the majority of cases unidirectional. 
Indeed, the brain signals are recorded and processed, 

but no feedback is directly transmitted to the brain. 
However, it does not mean that the user has no 
feedback at all. To be considered as a BCI, the system 
must provide a feedback to the user. This feedback 
reflects the result of the operation and may affect the 
next user's intention. There are many recording 
techniques to measure the brain activity and to convert 
it into signals which can be used by BCI. Some of these 
methods, called invasive, are mainly used in animals 
and require a neurosurgery implantation in the cortex. 
This type of recording methods allows a better signal 
quality. But over time, cysts could be formed and 
reduce the signal quality. The second technique, known 
as non-invasive, is described as “lightweight” since its 
implementation is simple, fast and without risks in the 
physical integrity. This makes it the most commonly 
used method for the development of a BCI. 

In recent years, several researches have been 
conducted to study the brain behavior and the attention 
process during a cognitive task. In the Keller's ARCS 
model (Keller, 1987a, 1987b) attention is considered 
fundamental to achieve the motivation in the classroom. 
In this model, the components: Attention, Relevance, 
Confidence and Satisfaction should be achieved if the 
learner is going to be motivated. In order to recognize 
the students' attention in the computer mediated 
learning, several researches have been conducted. 
These  studies  were  based on the Artificial Intelligence  
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in EDucation (AIED). This field has dealt with two 
main problems (1) attention and motivation recognition 
(Başar et al., 2001; Conati and Merten, 2007), (2) 
Students' reactions. For attention and motivation 
recognition, researches were based on two main 
methodologies. The first aims at modeling using 
physiological markers and the second by using user-
generated data. Results give an indication of physical 
interactions which are associated to the attention or 
motivation state during learner and educational system 
interactions. 

As an ARCS model-based study, (Rebolledo-
Mendez et al., 2009) conducted a study to test the 
usability of NeuroSky EEG headset to detect the 
attention level in an assessment exercise in Second 
Life. The approach used in this study fuses EEG 
recordings with the user-generated data. The adopted 
model combines attention readings with other 
information such as the number of correct answers or 
the taken time to answer each question. The aim of this 
combination is modeling attention during an assessment 
exercise. 

On another hand, estimating the attention level and 
the cognitive load from the EEG requires objective 
methods to determine the cognitive overload of the 
brain mental fatigue during the work performance. In 
Holm et al. (2009), authors have determined an index 
�, based on the prefrontal theta (4-7 Hz) oscillation 
(electrode Fz) and the parietal alpha (8-11 Hz) 
oscillation (electrode Pz): 

 

� =
����� (
�)

���� (��)
                 (1) 

 

The � index increases with the increasing number 

of tasks to perform and the time awake. Determining 

the workload status increasing would provide the 

opportunity to either prevent or help subjects with 

automated systems. The main results are focused on the 

information from the EEG spectrum and particularly on 

the theta oscillation increasing in the prefrontal area and 

the alpha oscillation decreasing in the parietal area. 

In this study we propose an offline method to 

illustrate effects of the learning task difficulty on the 

prefrontal brain area using only a single EEG electrode 

and based on the Fisher-Snedecor test. The 

experimentations are based on solving a matrix 

problem. Furthermore, we highlight the brain 

oscillations which enter into interaction to describe the 

increase or decrease in vigilance and mental efforts 

during a learning task. 

 

MATERIALS AND METHODS 

 

In our application, we are interested at discovering 

a side of the human brain behavior when performing a 

cognitive task based only on a single EEG electrode 

placed in the brain prefrontal area. 

 
 

Fig. 1: Fp1 electrode placement in the 10-20 international 

system 

 
Protocol and experimentations: EEG data used in this 
study were recorded on 11 subjects from the 
Departments of Mathematics, Computer Science and 
Biology at the Mohamed First University, Morocco. 
The population consisted of 3 females and 8 males aged 
between 20 and 32 years old. In the general case of a 
BCI-based experiment the number of subjects does not 
exceed 5 in average. The experimentations conducted in 
this study consist of two tests in which the user must 
solve a set of matrix products with different difficulties. 
EEG data were recorded using the OpenViBE (Renard 
et al., 2010) acquisition server with a sampling 
frequncy of 512Hz and applying the filter band-pass 
0.5-30 Hz. 
 
EEG data filtering: The brain signals acquisition was 
performed using the NeuroSky headset with a single 

��/���� electrode placed at the prefrontal brain area 
as it is depicted in Fig. 1. We decided to work on the 
Fp1 electrode for various reasons. From a practical 
point of view, it allows to set the electrode on the facial 
skin, which enables a better signal quality. On another 
hand, the prefrontal brain area is the more supposed to 
contain the working memory which allows performing 
cognitive processes. This memory is deeply involved in 
the reasoning-based processes such as reading, writing 
and calculates. In contrast, given its position, the Fp1 
electrode is influenced by certain noises, especially 
ocular artifacts. An effective way to deal with these 
disturbances is by asking subjects to restrict their eye 
movements fixating on a stable point (Klados et al., 
2011). However, this fixation may affect the 
neuroscience interpretation of the results. To overcome 
this problem, we use an eye blinks rejection method 
that we have developed in a previous work (Zammouri 
et al., 2015). For the sake of completeness, we briefly 
explain this method. 

Let �(�) be the EEG signal vector. We draw the 
graphical representation of the distribution of the vector 
� as a histogram. In all cases, the histogram was a 



 

 

Res. J. Appl. Sci. Eng. Technol., 13(3): 232-236, 2016 

 

233 

Gaussian cloche. This information allows assuming that 
the EEG signal is a Normal Gaussian distribution: 

 

�(�) ~ �(�� , ��
�)                 (2) 

 

The Eq. (2) defines the range of the EEG 

recordings that are not contaminated by eye 

movements. Besides this range we find the large 

amplitudes which represent eye movements. In below, 

we give the pseudo algorithm of this filtering method: 

 

Algorithm Eye blinks rejection 

Require: x ∈ ℝ" (EEG data vector) 

1:  H ← Histogram() 

2:  µ
-

← mean(x) , σ0 ← standard − deviation (x) 

3:  Choose k (to determine µ
0

− k ∗ σ0 and µ
0

+ k ∗

σ0) 

4:  For i = 0 to N 

6:  Detect P points: P < (µ
0

− k ∗ σ0) orP > (µ
0

+ k ∗

σ0)  

7:  End for 

8:  Reject all the detected eye blinks 

 

End 

The comparison of the eye blinks detection 

algorithm using the ROC curves method revealed that 

the algorithm performs well in the detection of eye 

blinks. The performance characteristics parameters 

calculated on all subjects are presented in Table 1. 

The True Positive Rate (TPR) or detection rate is 

the ratio between the number of annotations of true eye 

blinks made by the algorithm and the number of true 

annotations of true eye blinks made by the expert. The 

false positive rate (FPR = 1-SPC) represents the ratio 

between the number of false decisions made by the 

algorithm and the number of the expert’s annotations 

concerning non-eye blinks. These rates are calculated as 

presented in the two Eq. (3) and (4): 

 

<=> =
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@
                (3) 
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                (4) 

 

Changes detection algorithm: The principle of our 

method to illustrate the effects of a learning task 

difficulty on the prefrontal brain area is shown in Fig. 2. 

The subject performs the two tests of two different 

levels of difficulty. The recorded EEG data during the 

two tests are then filtered using the eye blinks rejection 

method described above. Based on a Short Time 

Fourier Transform (STFT), the EEG power spectrum is 

computed in order to distinguish the different EEG 

oscillations. The Fisher-Snedecor test is then applied in 

order to compare brain oscillations in the two tests. 

The STFT is used to calculate the EEG power 

spectrum and extract the different brain oscillations. 

The power spectrum is calculated every second using 

an averaged periodogram with a Hanning window. 

Applying an eye blinks rejection method at the 

beginning of our approach is justified by the reduction 

of the effects of these disturbances on the brain 

oscillations. Then, the power of each band is computed 

every second. For sake of completeness we describe the 

use of this comparison test in our approach. 

Let � and A be two independent and normal 

samples with lengths B� and BC respectively and let D�
� 

and  DC
�  be  their  experimental  variances  respectively. 

 
Table 1: ROC parameters for the filtering algorithm 

Subjects 

ROC Parameters 

-----------------------------------------------------------

TPR (%) SPC (%) PPV (%) 

Subject 1 90.00 99.30 98.30 

Subject 2 97.80 99.30 95.74 

Subject 3 91.41 99.20 100.0 

Subject 4 100.0 99.10 90.00 

Subject 5 100.0 97.80 78.04 

Subject 6 92.50 97.60 88.10 

Subject 7 94.11 97.50 84.00 

Subject 8 96.00 96.80 84.84 

Subject 9 85.13 93.90 87.27 

Subject 10 90.00 90.90 71.42 

Subject 11 92.40 96.30 87.02 

Average 93.57 97.06 87.70 

 

 
 

Fig. 2: Flowchart of our methodology to illustrate effects of changing difficulty levels on the prefrontal brain area during a 

learning task 
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The test of Fisher-Snedecor aims to determine whether 

the two samples belong to the same population. Hence, 

we have two hypotheses. The Null Hypothesis (EF) 

corresponds to D�
� = DC

�. Alternative Hypothesis E 

corresponds to D�
� ≠ DC

�. From this, a statistic H is 

calculated: 

 

H =
IJ

K

IL
K                  (5) 

 

The statistic H follows a Fisher law with B� − 1 

and BC − 1 degrees of freedom. Therefore the equality 

of variances can be tested using a bilateral test with a 

specific confidence threshold N. If H > N we can reject 

EF with a � risk of having reject it. If H < N we accept 

EF. For a given � and degrees of freedom, we seek the 

theoretical value in the Fisher’s table. In our approach, 

the Fisher-Snedecor’s test is applied to each brain 

oscillation  to  make  a  comparison  between  the  two 

tests. 

 

RESULTS AND DISCUSSION 
 

The automatic system proposed in this study 
provides a classification of two different levels of 
mental efforts while it is possible that the EEG data set 
contains other subclasses in each of the two 
distinguished main classes. This assumption is justified 
by the fact that our algorithm compare variances of the 
wholly tow tests. Results of the Fisher-Snedecor test, 
presented in Table 2 and Fig. 3, demonstrate that our 
method performs well in distinguishing the two main 
classes of mental efforts induced by the two 
experimental tests. On another hand and in order to 
highlight effects of changes in difficulty levels of the 
learning task, in each of the two experimental tests the 
mean of each band power is computed. The aim is to 
find a correlation with decisions made by the Fisher-
Snedecor test. Results presented in Fig. 3 show and 
illustrate the decisions made by the Fisher-Snedecor 
test. Indeed, when the statistic F moves away from the 
threshold Nthe difference of averaged powers of each 
band increases. 

 
 

 
 

 
 

Fig. 3: Averaged band powers  
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Table 2: Statistic ‘F’ obtained for all subjects 

Subjects 

ROC Parameters 

--------------------------------------------------------------------------------------------------------------- 

λ Delta (0.5-3 Hz) Theta (4-7 Hz) Alpha (8-11 Hz) 

Subject 1 3.9139 2.8327 2.386 1.44 

Subject 2 24.1998 4.55150 3.3829 1.33 

Subject 3 6.19990 2.76010 4.0466 1.52 

Subject 4 1.11330 1.30360 1.1604 1.58 

Subject 5 0.68800 3.04930 2.6374 1.66 

Subject 6 11.6495 1.53170 1.5292 1.52 

Subject 7 3.06320 1.09220 0.8722 1.48 

Subject 8 7.63320 12.3728 4.4570 1.63 

Subject 9 1.55030 1.19860 1.3397 1.19 

Subject10 24.5368 15.4993 1.8420 1.63 

Subject 11 0.93300 1.36200 0.7900 1.31 

 

 
 

Fig. 4: Agreement coefficients between the expert and the 

proposed algorithm  

 

On another hand, we find that increasing the level 

of difficulty in the learning task reduces the power of 

delta, theta and alpha bands in the prefrontal brain area. 

By comparing our results to those existing in the 

literature we find a strong correlation with findings of 

Otmani et al. (2005), Papadelis et al. (2006) and Kaida 

et al. (2007). From this comparison we deduce that the 

theta and alpha activities decrease, obtained from our 

experimental results when increasing the learning task 

difficulty, is an indicator of the subject’s mental effort 

and vigilance increase. In order to evaluate the 

performance of the proposed method, an expert’s 

annotations are used. For each band power, the expert 

identify whether the EEG data of the two tests 

correspond to two different classes or not. Therefore, 

the classification results of our method are compared to 

the expert’s annotations. The agreement is assessed 

using the Cohen’s Kappa test which represents a 

statistical metric of agreement: 

 

O =
�P(�)Q�P(�)

RQ�P(�)
                (6) 

 

where, =S(T) represents the agreement existing between 

the algorithm and the expert and =S(U) is the probability 

of a random agreement. The obtained results of the 

agreement assessment are reported in Fig. 4. These 

results show a strong agreement (k = 0.64) between the 

expert and the classifications of the algorithm regarding 

changes in the alpha band. For the delta band, the 

Kappa test give a value K = 0.42. This reflects a 

moderate agreement between the expert and the 

algorithm. Regarding the changes in the theta band., the 

agreement is weak and is justified by a coefficient k = 

0.24. 

Our results demonstrate that a single non-invasive 

EEG channel can be used to illustrate and highlight 

reactions of the prefrontal brain area to changes of 

difficulties levels in cognitive tasks. An automatic 

system such as the one described in our investigation 

could be used in different domains. For instance, in the 

medical field, it could represent for neurologist, a more 

subjective mean to assess improvements of a patient’s 

status. In the learning area and the technologies 

associated with it, this classification system could be 

exploited in the development of new adaptive 

intelligent tutoring systems. 

 

CONCLUSION 

 

An algorithm for distinguishing two classes of 

mental efforts has been described in this study. Based 

on a Fisher-Snedecor test, this method highlights effects 

of learning task difficulties on delta, theta and alpha 

band powers in the prefrontal brain area. Using only 

one EEG channel, the Kappa coefficients, computed in 

order to assess the agreement rate between the 

algorithm decisions and those made by an expert 

reached 62% of agreement. As further works, we are 

considering to study the other different brain areas in 

order to highlight the effects of changing difficulty 

levels of a learning task on these brain areas. Moreover, 

we seek define new and optimal models which can 

describe the learning process and exploit only the brain 

information measured in a non-invasive way. 
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