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Abstract: Several millions of digital images are transmitted every minute via mobile applications. The main feature 
of these images is their huge sizes. However, most of their details are not important such as natural images. 
Continuous efforts are achieved to utilize the wireless bandwidth and capacity for mobile users. One of the most 
significant efforts is the image compression. The aim of this study is to introduce a new lossy technique called RFID 
for compressing images, in order to overcome these problems by achieving high compression ratio. The proposed 
technique depends on increasing the redundancy and similarity among the neighboring pixels of images by rounding 
the pixels' intensities followed by the dividing process, which makes compression feasible. It can be applied alone or 
followed by any lossless compression algorithm. Experimental results show a great performance when RIFD 
followed by Huffman algorithm. 
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INTRODUCTION 

 
Image compression is the method of decreasing the 

image size without affecting the image quality or it will 
be affected at an acceptable level. Thus, images 
transmission over networks can be obtained by the 
compressed size which saves the memory space, as well 
(Mathur et al., 2012). However, complexities of the 
compression algorithms should be low enough for a 
given system in addition to enhance the transmission 
throughput.  

Lossless and lossy are the two main categories of 

compression. In lossless compression, the original 

image file can be recovered from the compressed one. 

In this category of compression only a few mechanisms 

are followed for the reduction of data and then the data 

reduction is very restricted (White Paper, 2008). Lossy 

compression are particularly convenient for specific 

applications such natural images where slight (or not 

perceived) loss of accuracy is not noticeable and 

passable to accomplish a significant decreasing in bit 

rate. 

Lossy compression techniques are relinquishing a 

specific loss of fidelity in transmission for fully 

incremented compression. These techniques behave 

effective when implemented on the digitized voices or 

digital natural images. By their nature, the analog 

representations of these digital forms are not exemplary 

to start with; consequently it will be acceptable if the 

input and output are not exactly matching (Nelson, 

1992).  

After a famous algorithm called Huffman (1952) 
coding was introduced in 1952 many though that no 
more research was needed in this area because Huffman 
(1952) was performing optimally. A few decades later 
several new algorithms were starting to develop which 
fixed some of the problems that had been discovered 
with the Huffman algorithm. 

Evolution of lossy compression techniques is 
motivated by comprehensive researches in 1980s, 
which concentrate on the human eye limitations. So, all 
of lossy algorithms depends on the fact that little 
adjustments and loss of information via 
coding/encoding processes overwhelmingly do not 
destroy the image quality as realized by the human 
eyes. Smaller files and shorter encoding time are the 
target to be developed by many commercial companies 
and different researchers for many years. 

In a particular space of memory, reduced image 
size by compression algorithm is assisting in store 
additional images. It also decreases the required time to 
transmit images over the Internet (Verma et al., 2012). 
So, the main objective of this study is to develop and 
propose a new lossy image compression technique 
where a slight information loss is accepted. However, 
the proposed compression technique has a very 
significant feature which is considerable compression 
efficiency. 
 

IMAGE COMPRESSION BACKGROUND 
 

Image compression techniques encode the original 
images with less number of bits by reducing the 



 

 

Res. J. Appl. Sci. Eng. Technol., 12(6): 680-685, 2016 

 

681 

redundancies of pixel values into an image and to 
transmit or store them in an effective shape (Wei, 
2008). 

Accessing the multimedia through Internet and the 
telecommunications network makes the demand for 
communication of multimedia is increasing 
dramatically. With the explosive growing of digital 
cameras and its use, then transferring, manipulating and 
storing of digital images become very important 
subjects to be handled especially that images sizes are 
very large and takes most of the disk spaces. The main 
partition of the communication bandwidth is occupied 
by the multimedia data which comprises the image 
data. Consequently developing of robust image 
compression techniques is totally mandatory (Ames, 
2002). Digital images have a common feature where 
there is high correlation between the neighboring 
pixels, which causes highly information redundancy. 
The main goal of image compression techniques is to 
represent the images with less correlated pixels. 
Generally in image compression, irrelevancy and 
redundancy are used as two primary principles. In 
Irrelevancy, not noticeable pixel values are neglected 
and the redundancy is removed from the original image 
in the Redundancy (Gautam, 2010). 
 
How an image is stored? A digital image can be 
represented by a two (grayscale image) or three 
(colored image) dimensional array of pixels. When the 
image is a grayscale, then the pixels will have a positive 
integer numbers as the intensities values. The typical bit 
depth of grayscale images could be 8 or 16 bits, then 
the range of pixel values of the image will be between 0 
to 2^N-1 (Where N is bit depth). For example, if the 
bit-depth is 8 then the range of intensity values will be 
between 0 and 255. White is 255, Black is 0 and the 
gray levels will be represented by the other values 1 to 
254). These values are encoded using binary code 
representation, 11111111 is the code for 255 and 
10000111 is code for 135 as the following: 
 
128 64 32 16 8 4 2 1 

1 0 0 0 0 1 1 1 

 
Equivalent to 135 in decimal coding system, the 

summation of all values above every one: 128+4+2+1. 
The compression algorithms of colored images can 

be derived from the compression algorithms of 
grayscale images (Starosolski, 2007). In the colored 
images, each pixel is represented by three values for: 
red, green and blue known as RGB (each color occupies  

8 bits and the total of 24 bits). In an RGB image, an 
additive color model is used to represent the color by 
merging the intensities for the three components RGB 
of the pixel (Pane and Joe, 2005). For example, black is 
represented by setting the zeros for red, blue and green. 
To represent white, the maximum value 255 will be set 
for RGB for the pixel. The other colors are represented 
by merging the three colors with different intensity 
values results a new color as single value for the pixel 
(Pane and Joe, 2005). 
 
Compression performance measures: Measuring the 

compression algorithm performance depends on the 

type of the application and based on the different 

criteria that used. However, the capacity efficiency is 

the main performance criterion (in other cases, time 

efficiency can be considered). Generally, measuring the 

image compression algorithm performance is 

sophisticated and it is not an easy task because the 

manner of compression depends on bit-stream 

redundancy in the original image. The performance 

could depend on the structure and the type of the 

original image or it is based on the compression 

algorithm category: lossless or lossy. If a lossless image 

compression algorithm is measured, then the time and 

capacity efficiencies will be less examined when the 

measuring will be for the lossy compression ones. 

The Performance of compression algorithms can be 

measured or evaluated using one or more of the 

following (Kodituwakku and Amarasinghe, 2007): 
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All the above evaluation measures use the image 

size in order to examine the efficiency of the algorithm. 

However, other performance evaluation measures can 

be used such: probability distribution, computational 

complexity and compression time. 

Specifically, the quality measures of lossy 

algorithms can be classified into: Subjective and 

Objective measures. In the subjective, the compressed 

image will be evaluated by human observer who judges 

the quality of the algorithm based on the quality rating 

in Table 1 (Frendendall and Behrend, 1960): 
 

Table 1: Rating of compressed image quality  

Value  Rating Description  

1 Excellent  An image of extremely high quality, as good as you could desire. 

2 Fine  An image of high quality, providing enjoyable viewing. Interference is not objectionable. 

3 Passable  An image of acceptable quality. Interefence is not objectionable. 

4 Marginal  An image of poor quality; you wish you could improve it. Interefence is somewhat objecetionable. 

5 Inferior  A very poor imag, but you could watch it. Objectionable interefence is definitely present. 

6 Unusable  An image so bad that you could not watch  it. 
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RIFD (THE PROPOSED ALGORITHM) 
 

Most the digital images have the same feature 
which is an information redundancy. These 
redundancies could be removed as much as possible by 
minimizing   the   bit-depth   of the pixels’ values into 
minimal number of bits in order to accomplish high 
compression ratio. The proposed algorithm in this study 
tries to remove or minimize the information redundancy 
included into the images while keeping its recognized 
visual quality and comparable to the original one. For 
instance; if the bit-depth for each pixel in the original 
image is 8 bits and the compression algorithm reduces 
the required bits to 5, then the image will be 
compressed. The only drawback of this algorithm is 
there will be some precision loss and some slight 
distortions could not be negated. However, as one of 
lossy compression this algorithm produces an 
acceptable distortion in many imaging applications 
because a slight loss in the image is not noticed by the 
human eye. 

The main idea of the proposed algorithm is based 
on two facts: 

 

• The neighboring pixels are correlated or very 
similar 

• The human eye can perceive a very limited number 
of intensities. So; if the intensity values of the 
adjacent pixels are rounding to the same value, 
then the redundancy will increase and the updated 
intensity values will not noticeable by human eyes. 
Increasing the information redundancy assists the 
image to be more compressed. Therefore, finding a 
less correlated representation of image is one of the 
most important tasks.  

 
One of the basic concepts in compression is the 

reduction of redundancy and irrelevancy. This can be 
done by removing duplication from the image. 
Sometime, Human Visual System (HVS) cannot notice 
some parts of the signal, i.e., omitting these parts will 
not be noticed by the receiver. This is called as 
Irrelevancy.  

The basic idea of the proposed algorithm is to 
check the whole pixels and transform each pixel into a 
number divisible by 10 according to the following 
conditions. Here, a new formula is proposed to 
transform any number in the range 0-255 into a number 
that when divided by 10 the result is always lying 
between 0-9. Therefore, the pixels 200, 201 and 202 are 
the same for the human eye. Hence, a novel algorithm 
have been proposed to transform each pixel in the range 
0-255 into the following numbers 0, 10, 20, 30, 40,…, 
200, 210,..., 250, (i.e., multiples of 10). After that, it 
narrows the range of pixel values which can be 
represented by 5 bits rather than 8 bits  by  dividing  the  

 

 

Fig. 1: 8×8 block as a sample 

 

 
 

Fig. 2: 8×8 Block AfterRounding Process 
 

 
 

Fig. 3: 8×8 Block after Dividing Process 

 

new values (0, 10, 20,… 250). This algorithm called 

RIFD because it is Rounding the Intensity Followed by 

Division. It consists of two main steps: rounding and 

dividing. 

Additionally, it can be seen that the new pixels are 

always having zero remainder when divided by 10. 

Consequently, the resulting numbers are multiples of 10 

between 0-250, which are 26 values: 0, 10, 20, 30, … 

and 250. Hence, if we divide these numbers by 10 again 

we will get remainder range from 0-25. Now, let us take 

a practical example, Fig. 1 is an exactly 8×8 block have 

been taken from any arrays in any image. 

After the rounding step of RIFD is applied (i.e., 

transform each pixel into multiple of 10), the new 8×8 

block will be as in Fig. 2. 

After the dividing step of RIFD is applied (i.e., 

decrease the bit-depth of each pixel), the new 8×8 block 

will be as in Fig. 3. 

 
Table 2: Binary representation for pixel values from 0 to 25 

Pixel value 0 1 2 3 4 5 6 7 8 9 10 …. 25 

Binary value 0 1 10 11 100 101 110 111 1000 1001 1010 …. 11001 
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It is well known that every decimal number 0-255 

is represented by 8-bits (1 byte: ASCII coding 

representation). After transformation into by ten and 

making each number between 0-25 (255/10 = 25). So, 

every new intensity value will be represented by 5 bits 

only as shown in Table 2. 

The main benefit of the RIFD is to increase 

redundancy or the probability of each pixel (it can 

notice that from Fig. 2). Thus, this will prepare the 

image to be much compressed efficiently using any 

lossless technique such as Huffman coding. 

 

How RIFD does work? 

Encode phase (Assume that the bit-depth is 8 bits): 

 

• Read an intensity value f(x, y). 

• The intensity value   in each image pixel is rounded 

to the nearest tenth. For example, if the intensity 

value is 157, then it will be rounded to 160.  

• Divide the rounded intensity by 10 and store it as 

new intensity value g(x, y). For example, 160 is 

divided by 10 and then 16 will store as new 

intensity value for g(x, y). 

• To optimize RIFD, Huffman technique could be 

implemented in order to increase the compression 

performance. 

 

Important note: If the encode phase is implemented on 

the colored images, then the pervious steps will be 

applied 3 times on the RGB for each pixel (Matlab code 

to process colored images in Appendix-A). If the bit-

depth is 16, then the intensity will be rounded to the 

nearest thousand and then divided by 1000. For 

example, if the intensity is 64,235 it will be rounded to 

64,000 and then divided by 1000 to produce new 

intensity 64. So, all new intensity values will be 

between 0 and 66 (i.e., every new intensity value will 

be represented by 6 bits).  

 

Decode phase: 

 

• Decode the code generated by Huffman algorithm. 

• Multiply each intensity value by 10. For example, 

16 multiply by 10 to retrieve the rounded intensity 

value 160. 

Matlab code of RIFD: The Matlab Code of RIFD as 

follow: 

 

for x = 1:M % M is the number of image rows 

for y = 1:N % N is the number of image rows 

if mod( f(x, y), 10) ==9 

      f(x, y) = g(x, y) + 1; 

else if mod( f(x, y), 10) == 8  

f(x, y) = g(x, y) + 2; 

else if mod( f(x, y), 10) == 7 

f(x, y) = g(x, y) + 3; 

else if mod( f(x, y), 10) == 6 

f(x, y) = g(x, y) + 4; 

else if mod( f(x, y), 10)==5 

f(x, y) = g(x, y) - 5; 

else if mod( f(x, y), 10) == 4 

f(x, y) = g(x, y) - 4; 

else if mod( f(x, y), 10)==3 

f(x, y) = g(x, y) - 3; 

else if mod( f(x, y), 10) == 2 

f(x, y) = g(x, y) - 2; 

else if mod( f(x, y), 10) == 1 

f(x, y) = g(x, y) - 1; 

else if mod( f(x, y), 10) == 0 

  f(x, y) = g(x, y) ; 

   % end; 10 times here for 10 if statements 

   g(x, y) = g(x,y) /10; 

 end; % end for x 

end; % end for y 
 

RESULTS AND DISCUSSION 
 

This section presents the experiment accomplished 
in order to evaluate the performance of RIFD. Matlab 
R2010a is used in all experiments and it shows that the 
proposed algorithm is very significant improvement in 
the compression ratios values. 

A new test set of several natural continuous 

colored and grayscale images was designed to examine 

the performance of RIFD algorithm. The major cause of 

designing this set was that there is no overtly obtainable 

standard set of test images including huge images with 

high quality, which were primarily obtained with 

different sizes and bit-depths 8 and 16 bits of grayscale 

and colored images. The set include natural continuous 

colored and grayscale images of different bit depths (8 

and 16 bits), different sizes (up to 181,737 bytes) and 

format (png and jpg).  

 
Table 3: Comparative between Huffman and RIFD based on CR 

Image name Image type 
Original 
image size 

Image size by 
Huffman CR by Huffman Image size by RIFD CR by RIFD 

Cameraman (png) Grayscale  8 bit 38267 33697 1.13 8708 4.39 

Lena(png) Grayscale  8 bit 38936 36344 1.07 9225 4.22 
House(png) Grayscale  8 bit 34985 28549 1.22 6089 5.74 

Peppers (png) Grayscale  8 bit 40181 37978 1.05 10074 3.98 

Lena (png) Colored RGB 181737 169546 1.07 42600 4.27 
Bird (jpg) Colored RGB 32629 31340 1.04 3124 10.44 

Lisa(jpg) Colored RGB 33618 31142 1.07 2250 14.9 

Lena (png) Grayscale 16 bit 76156 63463 1.20 22435 3.39 
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Fig. 5: Comparison of compression ratio between huffman and 

RIFD 

 

The tested images in the designed test set and the 

images after decompression using RIFD are presented 

in   Appendix-B. As mentioned before that the losses 

causes by the proposed algorithm is not perceived by 

the human observers. 

In order to test the performance of RIFD, the 

compression ratio was used as the main compression 

measure because it is the mostly used measure in the 

literature. However, the performance of RIFD must be 

compared with the performance of a well-known 

compression algorithm (Huffman algorithm is used). 

Table 3 shows the result of all experiments over 8 

images with different bit-depth, size, format and type. 

The columns of this table ass follow: image name, 

image type, original image size, compressed image size 

by Huffman, compression ration using Huffman, 

compressed image size by RIFD and compression 

ration using RIFD respectively. Moreover, all the 

compression ratios (in the last column) resulted from 

RIFD depicted its superiority over the compression 

ratios that obtained from classical Huffman algorithm 

(in the 5th column). 

Figure 5 is a graphical representation for columns: 

1, 5 and 8 respectively from the Table 3. By reviewing 

the column charts, it is noticeable that RIFD gives 

better compression ratio for all images in test set. 

Moreover, the performance of RIFD is better than the 

classical Huffman ten or more times with the colored 

images and especially the .jpg images (Bird.jpg and 

Lisa.jpg). The average of compression ratio for all 

images in the test set using Huffman was 1.11, while it 

was 6.42 using RIFD. 

 

CONCLUSION 

 

This study presents a novel lossy image 

compression algorithm called RIFD. The mechanism of 

RIFD works by rounding and dividing the intensity of 

each pixel in the image. This will decrease the range of 

the intensities and then increase the redundancy of these 

intensities which helps in better compression 

performance. Its results are especially good for all 

natural images of high bit depths and for colored 

images.  

 
Appendix-A: RIFD Matlab Code to Compress the Colored Images 
 
A = imread('lena.png'); % or any other image 
 for f = 1:255 
  for h = 1:255 
    for c = 1:3 
       if mod(A(x, y, z),10) == 9 
             r(x, y, z) = A(x, y, z)+1; 
        else if mod(A(x, y, z),10) == 8 

r(x, y, z) = A(x, y, z)+2; 
        else if mod(A(x, y, z),10) == 7 

r(x, y, z)=A(x, y, z)+3; 
else if mod(A(x, y, z), 10) == 6 

r(x, y, z) = A(x, y, z)+4; 
else if mod(A(x, y, z),10) == 5 

r(x, y, z) = A(x, y, z)+5; 
else if mod(A(x, y, z),10) == 4 

r(x, y ,z) = A(x, y, z)-4; 
else if mod(A(x, y, z),10) == 3 

r(x, y, z) = A(x, y, z)-3; 
else if mod(A(x, y, z),10) == 2 

r(x, y, z) = A(x, y, z)-2; 
else if mod(A(x, y, z),10) == 1 

r(x, y, z) = A(x, y, z)-1; 
else if mod(A(x ,y, z),10) == 0 

r(x, y, z) = A(x, y, z); 
         end; end; end; end; end; end; end; end; end; end;  
     end; % end for x 
 end; % end for y 
end; % end for z 
r = r/10; 
B = rgb2gray(A); 
% Apply Huffman coding of the resulted image – code found at 
Matworks website 
 
Appendix-B: Sample of test set images 

Image name Original image 
Image after RIFD 
decompression 

Camerman.png 

  
Lena.png 
Grayscale  
8 bits   
Lena.png 
Colored 
RGB   
Bird.jpg 
Colored 
RGB   
Lisa.jpg 
Colored 
RGB   
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