
Research Journal of Applied Sciences, Engineering and Technology 12(6): 680-685, 2016

DOI:10.19026/rjaset.12.2716

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2016 Maxwell Scientific Publication Corp.

Submitted: August 5, 2015 Accepted: September 7, 2015 Published: March 15, 2016

Corresponding Author: Dr. M.A. Otair, Faculty of Computer Sciences and Informatics, Amman Arab University, 11953

Amman, Jordan
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

680

Research Article
Lossy Image Compression by Rounding the Intensity Followed by Dividing (RIFD)

Dr. M.A. Otair and F. Shehadeh

Faculty of Computer Sciences and Informatics, Amman Arab University, 11953 Amman, Jordan

Abstract: Several millions of digital images are transmitted every minute via mobile applications. The main feature
of these images is their huge sizes. However, most of their details are not important such as natural images.
Continuous efforts are achieved to utilize the wireless bandwidth and capacity for mobile users. One of the most
significant efforts is the image compression. The aim of this study is to introduce a new lossy technique called RFID
for compressing images, in order to overcome these problems by achieving high compression ratio. The proposed
technique depends on increasing the redundancy and similarity among the neighboring pixels of images by rounding
the pixels' intensities followed by the dividing process, which makes compression feasible. It can be applied alone or
followed by any lossless compression algorithm. Experimental results show a great performance when RIFD
followed by Huffman algorithm.

Keywords: Compression ratio, huffman algorithm, lossy compression, mobile applications

INTRODUCTION

Image compression is the method of decreasing the

image size without affecting the image quality or it will
be affected at an acceptable level. Thus, images
transmission over networks can be obtained by the
compressed size which saves the memory space, as well
(Mathur et al., 2012). However, complexities of the
compression algorithms should be low enough for a
given system in addition to enhance the transmission
throughput.

Lossless and lossy are the two main categories of

compression. In lossless compression, the original

image file can be recovered from the compressed one.

In this category of compression only a few mechanisms

are followed for the reduction of data and then the data

reduction is very restricted (White Paper, 2008). Lossy

compression are particularly convenient for specific

applications such natural images where slight (or not

perceived) loss of accuracy is not noticeable and

passable to accomplish a significant decreasing in bit

rate.

Lossy compression techniques are relinquishing a

specific loss of fidelity in transmission for fully

incremented compression. These techniques behave

effective when implemented on the digitized voices or

digital natural images. By their nature, the analog

representations of these digital forms are not exemplary

to start with; consequently it will be acceptable if the

input and output are not exactly matching (Nelson,

1992).

After a famous algorithm called Huffman (1952)
coding was introduced in 1952 many though that no
more research was needed in this area because Huffman
(1952) was performing optimally. A few decades later
several new algorithms were starting to develop which
fixed some of the problems that had been discovered
with the Huffman algorithm.

Evolution of lossy compression techniques is
motivated by comprehensive researches in 1980s,
which concentrate on the human eye limitations. So, all
of lossy algorithms depends on the fact that little
adjustments and loss of information via
coding/encoding processes overwhelmingly do not
destroy the image quality as realized by the human
eyes. Smaller files and shorter encoding time are the
target to be developed by many commercial companies
and different researchers for many years.

In a particular space of memory, reduced image
size by compression algorithm is assisting in store
additional images. It also decreases the required time to
transmit images over the Internet (Verma et al., 2012).
So, the main objective of this study is to develop and
propose a new lossy image compression technique
where a slight information loss is accepted. However,
the proposed compression technique has a very
significant feature which is considerable compression
efficiency.

IMAGE COMPRESSION BACKGROUND

Image compression techniques encode the original
images with less number of bits by reducing the

Res. J. Appl. Sci. Eng. Technol., 12(6): 680-685, 2016

681

redundancies of pixel values into an image and to
transmit or store them in an effective shape (Wei,
2008).

Accessing the multimedia through Internet and the
telecommunications network makes the demand for
communication of multimedia is increasing
dramatically. With the explosive growing of digital
cameras and its use, then transferring, manipulating and
storing of digital images become very important
subjects to be handled especially that images sizes are
very large and takes most of the disk spaces. The main
partition of the communication bandwidth is occupied
by the multimedia data which comprises the image
data. Consequently developing of robust image
compression techniques is totally mandatory (Ames,
2002). Digital images have a common feature where
there is high correlation between the neighboring
pixels, which causes highly information redundancy.
The main goal of image compression techniques is to
represent the images with less correlated pixels.
Generally in image compression, irrelevancy and
redundancy are used as two primary principles. In
Irrelevancy, not noticeable pixel values are neglected
and the redundancy is removed from the original image
in the Redundancy (Gautam, 2010).

How an image is stored? A digital image can be
represented by a two (grayscale image) or three
(colored image) dimensional array of pixels. When the
image is a grayscale, then the pixels will have a positive
integer numbers as the intensities values. The typical bit
depth of grayscale images could be 8 or 16 bits, then
the range of pixel values of the image will be between 0
to 2^N-1 (Where N is bit depth). For example, if the
bit-depth is 8 then the range of intensity values will be
between 0 and 255. White is 255, Black is 0 and the
gray levels will be represented by the other values 1 to
254). These values are encoded using binary code
representation, 11111111 is the code for 255 and
10000111 is code for 135 as the following:

128 64 32 16 8 4 2 1

1 0 0 0 0 1 1 1

Equivalent to 135 in decimal coding system, the

summation of all values above every one: 128+4+2+1.
The compression algorithms of colored images can

be derived from the compression algorithms of
grayscale images (Starosolski, 2007). In the colored
images, each pixel is represented by three values for:
red, green and blue known as RGB (each color occupies

8 bits and the total of 24 bits). In an RGB image, an
additive color model is used to represent the color by
merging the intensities for the three components RGB
of the pixel (Pane and Joe, 2005). For example, black is
represented by setting the zeros for red, blue and green.
To represent white, the maximum value 255 will be set
for RGB for the pixel. The other colors are represented
by merging the three colors with different intensity
values results a new color as single value for the pixel
(Pane and Joe, 2005).

Compression performance measures: Measuring the

compression algorithm performance depends on the

type of the application and based on the different

criteria that used. However, the capacity efficiency is

the main performance criterion (in other cases, time

efficiency can be considered). Generally, measuring the

image compression algorithm performance is

sophisticated and it is not an easy task because the

manner of compression depends on bit-stream

redundancy in the original image. The performance

could depend on the structure and the type of the

original image or it is based on the compression

algorithm category: lossless or lossy. If a lossless image

compression algorithm is measured, then the time and

capacity efficiencies will be less examined when the

measuring will be for the lossy compression ones.

The Performance of compression algorithms can be

measured or evaluated using one or more of the

following (Kodituwakku and Amarasinghe, 2007):

ncompressioaftersize

ncompressiobeforesize
rationcompressio

__

__
_ =

 (1)

%
__

_

comprbeforesize

compraftersizecomprbeforesize

percentagesaving

−

=

(2)

All the above evaluation measures use the image

size in order to examine the efficiency of the algorithm.

However, other performance evaluation measures can

be used such: probability distribution, computational

complexity and compression time.

Specifically, the quality measures of lossy

algorithms can be classified into: Subjective and

Objective measures. In the subjective, the compressed

image will be evaluated by human observer who judges

the quality of the algorithm based on the quality rating

in Table 1 (Frendendall and Behrend, 1960):

Table 1: Rating of compressed image quality

Value Rating Description

1 Excellent An image of extremely high quality, as good as you could desire.

2 Fine An image of high quality, providing enjoyable viewing. Interference is not objectionable.

3 Passable An image of acceptable quality. Interefence is not objectionable.

4 Marginal An image of poor quality; you wish you could improve it. Interefence is somewhat objecetionable.

5 Inferior A very poor imag, but you could watch it. Objectionable interefence is definitely present.

6 Unusable An image so bad that you could not watch it.

Res. J. Appl. Sci. Eng. Technol., 12(6): 680-685, 2016

682

RIFD (THE PROPOSED ALGORITHM)

Most the digital images have the same feature
which is an information redundancy. These
redundancies could be removed as much as possible by
minimizing the bit-depth of the pixels’ values into
minimal number of bits in order to accomplish high
compression ratio. The proposed algorithm in this study
tries to remove or minimize the information redundancy
included into the images while keeping its recognized
visual quality and comparable to the original one. For
instance; if the bit-depth for each pixel in the original
image is 8 bits and the compression algorithm reduces
the required bits to 5, then the image will be
compressed. The only drawback of this algorithm is
there will be some precision loss and some slight
distortions could not be negated. However, as one of
lossy compression this algorithm produces an
acceptable distortion in many imaging applications
because a slight loss in the image is not noticed by the
human eye.

The main idea of the proposed algorithm is based
on two facts:

• The neighboring pixels are correlated or very
similar

• The human eye can perceive a very limited number
of intensities. So; if the intensity values of the
adjacent pixels are rounding to the same value,
then the redundancy will increase and the updated
intensity values will not noticeable by human eyes.
Increasing the information redundancy assists the
image to be more compressed. Therefore, finding a
less correlated representation of image is one of the
most important tasks.

One of the basic concepts in compression is the

reduction of redundancy and irrelevancy. This can be
done by removing duplication from the image.
Sometime, Human Visual System (HVS) cannot notice
some parts of the signal, i.e., omitting these parts will
not be noticed by the receiver. This is called as
Irrelevancy.

The basic idea of the proposed algorithm is to
check the whole pixels and transform each pixel into a
number divisible by 10 according to the following
conditions. Here, a new formula is proposed to
transform any number in the range 0-255 into a number
that when divided by 10 the result is always lying
between 0-9. Therefore, the pixels 200, 201 and 202 are
the same for the human eye. Hence, a novel algorithm
have been proposed to transform each pixel in the range
0-255 into the following numbers 0, 10, 20, 30, 40,…,
200, 210,..., 250, (i.e., multiples of 10). After that, it
narrows the range of pixel values which can be
represented by 5 bits rather than 8 bits by dividing the

Fig. 1: 8×8 block as a sample

Fig. 2: 8×8 Block AfterRounding Process

Fig. 3: 8×8 Block after Dividing Process

new values (0, 10, 20,… 250). This algorithm called

RIFD because it is Rounding the Intensity Followed by

Division. It consists of two main steps: rounding and

dividing.

Additionally, it can be seen that the new pixels are

always having zero remainder when divided by 10.

Consequently, the resulting numbers are multiples of 10

between 0-250, which are 26 values: 0, 10, 20, 30, …

and 250. Hence, if we divide these numbers by 10 again

we will get remainder range from 0-25. Now, let us take

a practical example, Fig. 1 is an exactly 8×8 block have

been taken from any arrays in any image.

After the rounding step of RIFD is applied (i.e.,

transform each pixel into multiple of 10), the new 8×8

block will be as in Fig. 2.

After the dividing step of RIFD is applied (i.e.,

decrease the bit-depth of each pixel), the new 8×8 block

will be as in Fig. 3.

Table 2: Binary representation for pixel values from 0 to 25

Pixel value 0 1 2 3 4 5 6 7 8 9 10 …. 25

Binary value 0 1 10 11 100 101 110 111 1000 1001 1010 …. 11001

Res. J. Appl. Sci. Eng. Technol., 12(6): 680-685, 2016

683

It is well known that every decimal number 0-255

is represented by 8-bits (1 byte: ASCII coding

representation). After transformation into by ten and

making each number between 0-25 (255/10 = 25). So,

every new intensity value will be represented by 5 bits

only as shown in Table 2.

The main benefit of the RIFD is to increase

redundancy or the probability of each pixel (it can

notice that from Fig. 2). Thus, this will prepare the

image to be much compressed efficiently using any

lossless technique such as Huffman coding.

How RIFD does work?

Encode phase (Assume that the bit-depth is 8 bits):

• Read an intensity value f(x, y).

• The intensity value in each image pixel is rounded

to the nearest tenth. For example, if the intensity

value is 157, then it will be rounded to 160.

• Divide the rounded intensity by 10 and store it as

new intensity value g(x, y). For example, 160 is

divided by 10 and then 16 will store as new

intensity value for g(x, y).

• To optimize RIFD, Huffman technique could be

implemented in order to increase the compression

performance.

Important note: If the encode phase is implemented on

the colored images, then the pervious steps will be

applied 3 times on the RGB for each pixel (Matlab code

to process colored images in Appendix-A). If the bit-

depth is 16, then the intensity will be rounded to the

nearest thousand and then divided by 1000. For

example, if the intensity is 64,235 it will be rounded to

64,000 and then divided by 1000 to produce new

intensity 64. So, all new intensity values will be

between 0 and 66 (i.e., every new intensity value will

be represented by 6 bits).

Decode phase:

• Decode the code generated by Huffman algorithm.

• Multiply each intensity value by 10. For example,

16 multiply by 10 to retrieve the rounded intensity

value 160.

Matlab code of RIFD: The Matlab Code of RIFD as

follow:

for x = 1:M % M is the number of image rows

for y = 1:N % N is the number of image rows

if mod(f(x, y), 10) ==9

 f(x, y) = g(x, y) + 1;

else if mod(f(x, y), 10) == 8

f(x, y) = g(x, y) + 2;

else if mod(f(x, y), 10) == 7

f(x, y) = g(x, y) + 3;

else if mod(f(x, y), 10) == 6

f(x, y) = g(x, y) + 4;

else if mod(f(x, y), 10)==5

f(x, y) = g(x, y) - 5;

else if mod(f(x, y), 10) == 4

f(x, y) = g(x, y) - 4;

else if mod(f(x, y), 10)==3

f(x, y) = g(x, y) - 3;

else if mod(f(x, y), 10) == 2

f(x, y) = g(x, y) - 2;

else if mod(f(x, y), 10) == 1

f(x, y) = g(x, y) - 1;

else if mod(f(x, y), 10) == 0

 f(x, y) = g(x, y) ;

 % end; 10 times here for 10 if statements

 g(x, y) = g(x,y) /10;

 end; % end for x

end; % end for y

RESULTS AND DISCUSSION

This section presents the experiment accomplished
in order to evaluate the performance of RIFD. Matlab
R2010a is used in all experiments and it shows that the
proposed algorithm is very significant improvement in
the compression ratios values.

A new test set of several natural continuous

colored and grayscale images was designed to examine

the performance of RIFD algorithm. The major cause of

designing this set was that there is no overtly obtainable

standard set of test images including huge images with

high quality, which were primarily obtained with

different sizes and bit-depths 8 and 16 bits of grayscale

and colored images. The set include natural continuous

colored and grayscale images of different bit depths (8

and 16 bits), different sizes (up to 181,737 bytes) and

format (png and jpg).

Table 3: Comparative between Huffman and RIFD based on CR

Image name Image type
Original
image size

Image size by
Huffman CR by Huffman Image size by RIFD CR by RIFD

Cameraman (png) Grayscale 8 bit 38267 33697 1.13 8708 4.39

Lena(png) Grayscale 8 bit 38936 36344 1.07 9225 4.22
House(png) Grayscale 8 bit 34985 28549 1.22 6089 5.74

Peppers (png) Grayscale 8 bit 40181 37978 1.05 10074 3.98

Lena (png) Colored RGB 181737 169546 1.07 42600 4.27
Bird (jpg) Colored RGB 32629 31340 1.04 3124 10.44

Lisa(jpg) Colored RGB 33618 31142 1.07 2250 14.9

Lena (png) Grayscale 16 bit 76156 63463 1.20 22435 3.39

Res. J. Appl. Sci. Eng. Technol., 12(6): 680-685, 2016

684

Fig. 5: Comparison of compression ratio between huffman and

RIFD

The tested images in the designed test set and the

images after decompression using RIFD are presented

in Appendix-B. As mentioned before that the losses

causes by the proposed algorithm is not perceived by

the human observers.

In order to test the performance of RIFD, the

compression ratio was used as the main compression

measure because it is the mostly used measure in the

literature. However, the performance of RIFD must be

compared with the performance of a well-known

compression algorithm (Huffman algorithm is used).

Table 3 shows the result of all experiments over 8

images with different bit-depth, size, format and type.

The columns of this table ass follow: image name,

image type, original image size, compressed image size

by Huffman, compression ration using Huffman,

compressed image size by RIFD and compression

ration using RIFD respectively. Moreover, all the

compression ratios (in the last column) resulted from

RIFD depicted its superiority over the compression

ratios that obtained from classical Huffman algorithm

(in the 5th column).

Figure 5 is a graphical representation for columns:

1, 5 and 8 respectively from the Table 3. By reviewing

the column charts, it is noticeable that RIFD gives

better compression ratio for all images in test set.

Moreover, the performance of RIFD is better than the

classical Huffman ten or more times with the colored

images and especially the .jpg images (Bird.jpg and

Lisa.jpg). The average of compression ratio for all

images in the test set using Huffman was 1.11, while it

was 6.42 using RIFD.

CONCLUSION

This study presents a novel lossy image

compression algorithm called RIFD. The mechanism of

RIFD works by rounding and dividing the intensity of

each pixel in the image. This will decrease the range of

the intensities and then increase the redundancy of these

intensities which helps in better compression

performance. Its results are especially good for all

natural images of high bit depths and for colored

images.

Appendix-A: RIFD Matlab Code to Compress the Colored Images

A = imread('lena.png'); % or any other image
 for f = 1:255
 for h = 1:255
 for c = 1:3
 if mod(A(x, y, z),10) == 9
 r(x, y, z) = A(x, y, z)+1;
 else if mod(A(x, y, z),10) == 8

r(x, y, z) = A(x, y, z)+2;
 else if mod(A(x, y, z),10) == 7

r(x, y, z)=A(x, y, z)+3;
else if mod(A(x, y, z), 10) == 6

r(x, y, z) = A(x, y, z)+4;
else if mod(A(x, y, z),10) == 5

r(x, y, z) = A(x, y, z)+5;
else if mod(A(x, y, z),10) == 4

r(x, y ,z) = A(x, y, z)-4;
else if mod(A(x, y, z),10) == 3

r(x, y, z) = A(x, y, z)-3;
else if mod(A(x, y, z),10) == 2

r(x, y, z) = A(x, y, z)-2;
else if mod(A(x, y, z),10) == 1

r(x, y, z) = A(x, y, z)-1;
else if mod(A(x ,y, z),10) == 0

r(x, y, z) = A(x, y, z);
 end; end; end; end; end; end; end; end; end; end;
 end; % end for x
 end; % end for y
end; % end for z
r = r/10;
B = rgb2gray(A);
% Apply Huffman coding of the resulted image – code found at
Matworks website

Appendix-B: Sample of test set images

Image name Original image
Image after RIFD
decompression

Camerman.png

Lena.png
Grayscale
8 bits
Lena.png
Colored
RGB
Bird.jpg
Colored
RGB
Lisa.jpg
Colored
RGB

REFERENCES

Ames, G., 2002. Image Compression. Retrieved form:

www.cis.upenn.edu/~eas205.

Frendendall, G.L. and W.L. Behrend, 1960. Picture

quality-procedures for evaluating subjective effects

of interference. P. IRE, 48: 1030-1034.

16

14

12

10

8

6

4

2

0

C
am

er
am

an
 (
pn
g)
-8
 b
it
s

L
en
a(
p
ng
)-
8
b
it
s

H
o
us
e
(p
ng
)-
8
b
it
s

L
is
a(
ip
g)
R
G
B

P
ep
pe
rs
 (
pn
g
)-
8
bi
ts

L
en
a
(i
p
g)
-R
G
B

B
ir
d
(i
pg
)-
R
G
B

L
en
a(
pn
g)
-1
6
b
it
s

CR of huffman

CR of RIFD

1.2

3.39

14.9

1.07

10.44

1.04

4.27

1.07

3.98

1.05

5.74

1.22

4.22

1.07

4.39

1.13

Res. J. Appl. Sci. Eng. Technol., 12(6): 680-685, 2016

685

Gautam, B., 2010. Image compression using discrete

cosine transform & discrete wavelet transform.

B.Sc. Thesis, National Institute of Technology.

Huffman, D.A., 1952. A method for the construction of

minimum-redundancy codes. P. IRE, 40(9): 1098-

1101.
Kodituwakku, S.R. and U.S. Amarasinghe, 2007.

Comparison of lossless data compression
algorithms for text data. Indian J. Comput. Sci.
Eng., 1(4): 416-425.

Mathur, M.K., S. Loonker and D. Saxena, 2012.
Lossless Huffman coding technique for image
compression and reconstruction using binary trees.
Int. J. Comp. Tech. Appl., 3(1): 76-79.

Nelson, M., 1992. The Data Compression Book. M&T

Books, New York.

Pane, J.F. and L. Joe, 2005. Making better use of

bandwidth data compression and network

management technologies. Prepared for the United

States Army, The RAND Corporation.

Starosolski, R., 2007. Simple fast and adaptive lossless

image compression algorithm. Software Pract.

Exper., 37(1): 65-91.

Verma, P., P. Verma, A. Sahu, S. Sahu and N. Sahu,

2012. Comparison between different compression

and decompression techniques on MRI scan

images. Int. J. Adv. Res. Comput. Eng. Technol.

(IJARCET), 1(7): 109-113.

Wei, W., 2008. An Introduction to Image Compression.

National Taiwan University, Taipei, Taiwan, ROC,

2008.

White Paper, 2008. An Explanation of Video

Compression Techniques. Axis Communications.

