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Abstract: A new three Degree Of Freedom (3-DOF) parallel manipulator has been proposed in this study. Because 

the parallel manipulator has three Degree Of Freedom (DOF), one translation degree of freedom and two rotational 

degrees of freedom, it has received considerable attention from both researchers and manufacturers over the past 

years. The inverse kinematic and Jacobain matrix were derived. The dexterity of the parallel manipulator is 

presented. The key issue of how the kinematic performance in term of dexterity varies with differences in the 

structural parameters of the parallel manipulator is investigated. The simulation results, using MATLAB, testify the 

validity of the analytic model and illustrate the structural parameters have direct effect upon dexterity characteristic 

of the 3-DOF parallel manipulator. 
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INTRODUCTION 

 

Parallel manipulators have become popular in 

recent years due to their properties in terms of a high 

stiffness, high accuracy and high carrying payload over 

their serial counterparts. Parallel manipulators typically 

consist of a moving platform that is connected to a 

fixed base by several limbs in parallel (Liu and Kim, 

2003). 

Most of parallel manipulators are six Degrees Of 

Freedom (6-DOF) based on the Gough-Stewart 

platform manipulator due to the advantages mentioned 

above. However, 6-DOF parallel manipulator suffers 

from the complex structure, limited workspace and 

coupling problem of the position and orientation 

movement. To overcome these drawbacks, lower 

mobility parallel manipulator, whose degrees of 

freedom are less than 6-DOF, have been recently 

investigated. The reduction of the degrees of the 

freedom of the parallel manipulator from 6-DOF to 3-

DOF have attracted much attention because of simple 

mechanical structure, large workspace, easies in control 

and low manufacturing cost. The 3-DOF parallel 

manipulators have been used as drilling, painting, pick-

and-place and assembly. Many 3-DOF parallel 

manipulators have been designed for specific 

application such as the famous manipulator with three 

translations is the DELTA (Clavel, 1988; Liu and Kim, 

2003; Takamori and Tsuchiya, 2012), the CaPaMan 

(Thomas et al., 2005) and HANA parallel manipulators 

with three spatial DOF (Liu et al., 2001). Liu et al. 

(2005) presented a 3-DOF parallel manipulator with 

high rotational capability thanks to all single-DOF 

joints that are involved in the rotational DOF. Liuand 

Cheng(2004),Dasgupta and Mruthyunjaya (2000), 

Davliakos and Papadopoulos (2008), Guo et al.(2008) 

and Merlet (2006b) proposed a methodology to analyze 

singularity positions of a 3-RPS parallel manipulator. 

The condition number of the Jacobian matrix has 

been proposed as a measure of dexterity for parallel 

manipulators. Dexterity is defined as the capability of a 

manipulator to move as much as possible at a particular 

position and orientation as well as to measure kinematic 

accuracy (Xu et al., 1994). Positioning accuracy should 

be consistent with the location that exhibits condition 

number indices. In Merlet (2006b), the consistency of 

different types of condition numbers was compared 

with the measured positioning accuracy of the 

manipulator through experiments. Dexterity is sensitive 

to the structural parameters of the parallel manipulator 

because this characteristic depends on the Jacobian 

matrix. The deviation in the center position of the 

manipulator joints is called kinematics parameters in 

parallel manipulator calibration and error-estimation 

modeling (Song et al., 1999). The variation in 

kinematics parameters affects tracking accuracy. In 
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Masory et al. (1993), the dexterity of the Stewart 

platform was determined by considering the effects of 

kinematics parameters, such as link lengths, joint 

locations and design dimensions, on dexterity. In Li 

andXu (2006), the dexterity index with a space utility 

ratio for composing a mixed performance index and 

optimizing translational parallel manipulators was 

presented. The dexterity of a 6-DOF spatial parallel 

manipulator was compared quantitatively in Pond and 

Carretero (2007). In Merlet (2006b), manipulability, 

condition number and dexterity index, which were 

reviewed for application in parallel manipulators, were 

defined. In Wang et al. (2009, 2010), different 

approaches for computing the dexterity of manipulators 

were proposed. Gosselin and Angeles (1991) proposed 

the Global Condition Index based on the condition 

number to evaluate the dexterity of a manipulator at all 

points in the workspace. In this study, the kinematics 

analysis and effect of structural parameters on the 

performance kinematic of a 3-DOF parallel manipulator 

are studied.  

 

MATERIALS AND METHODS 
 

Mechanism description: A 3-DOF parallel 

manipulator is composed of a moving platform B, a 

fixed base A and three limbs connecting the moving 

platform and base. Two of limbs are RPU-type active 

limbs r1 and r3 with a linear actuator. Each of the RPU 

limb connects the moving platform B by universal joint 

U at ��  (� = 1,3) and revolute joint R at �� (� = 1,3) 

are located in the base A. the third limb RPS connects 

the moving platform B by universal joint S at ��, a 

prismatic joint P along 
� and revolute joint R at �� is 

located in the base A. Frame � − ��� is located at the 

center of the moving platform at p and frame � − ��� 

is located at the center of the base. The Z and w axes 

are perpendicular to the platforms and the X and Y axes 

are parallel to the u and v axes respectively. For the 

base, the Y-axis is along OA2 and the radius of the base 

is R. ��  and �� be angle between OA1 and X-axis, 

OA3 and X-axis, respectively. A CAD model of the 3-

DOF parallel kinematic machine is shown in Fig. 1. 

The mobility of the lower mobility parallel 

manipulator can be examined by using the modified 

Grubler-Kutzbach criterion (Guo et al., 2008). The 

modified Grubler- Kutzbach criterion is given by: 

 � = �(� − � − 1) + � �� + � −  !�"�              (1) 

 

In the 2RPU+RPS parallel manipulator, the number 

of links is � = 8, the number of joints � = 9, the sum 

of degrees of freedom of the joints are � = 13, a public 

constraint is 0 and the over constrained number is � = 2 . The degrees of freedom of 2RPU+RPS parallel 

manipulator are � = 3. 

 
 

Fig. 1: CAD model of a 2RPU+RPS parallel manipulator 

 

Position analysis of a 3-DOF parallel 

manipulator:The unit vector representation of the 

orientation uses nine parameters which are dependent 

of each other. The rotational transformation matrix &'( 

is formed by rotation about YXZ axis, namely, rotation 

of ) about Z axis, followed by a rotation of β about Y-

axis and then a rotation of α about X-axis. The unit 

vector P describes the position of the origin of the 

moving platform {B} to the base {A}: 

 &'( =
* +,�+-� .,�./� − +,�.-�+/� +,�.-�+/� + .,�./�.-� +-�+/� −+-�./�−.,�+-� .,�.-�+/� + +,�./� −.,�.-�./� + +,�+/�0 =
1�2 �2 �2�3 �3 �3�4 �4 �4 5 ;  7 = *727374

0                                           (2)  

 

where, ‘C’ and ’S’ are cosine and sine, respectively. 

The coordinate vector of joint Aiin moving platform 

{A} with respect to centroid of the base platform O-xyz 

and the coordinate vector of joint biin the base {B} with 

respect to centroid of the moving platform p-uvw, are 

expressed as:  

 

�� = 1&+8�&.8�0 5 ;  �� = 10&05 ; �: = 1&+8�&.8�0 5 

�:; = <
+8�
.8�0 = ; ��; = 10
05 ; �:; = <
+8�
.8�0 =              (3) 

 

The position vector of the moving platform vertices 

bi (i = 1, 2, 3) respect to centroid of the base platform 

can be expressed by a first closed loop vector equation 

encompasses both the moving platform and base of the 

manipulator: 

 >?@AAA = &'(B��'  +  7@A               (4) 
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Substituting Eq. (2) and (3) into Eq. (4), then the 

position kinematic equations of the moving platform 

vertices with respect to base are derived as: 

 

>�@AAA = *72 + 
+8��2 + 
.8��273 + 
+8��3 + 
.8��374 + 
+8��4 + 
.8��4
0 >�@AAAA = *72 + 
�273 + 
�374 + 
�4

0 

>:@AAAA = *72 + 
+8��2 + 
.8��273 + 
+8��3 + 
.8��374 + 
+8��4 + 
.8��4
0               (5) 

 

The inverse kinematics of the manipulator can be 

solved by writing the following constraint equation: 

 
?@AA = >?@AAA − ��?@AAAAAAA                                           (6) 

 

where, 
?@AA , � = (1, 23) is a vector of the leg. Hence: 

 


�CAAA = *72 + 
+8��2 + 
.8��2 − &+8�73 + 
+8��3 + 
.8��3 − &.8�74 + 
+8��4 + 
.8��4
0 


�CAAA = * 72 + 
�273 + 
�3 − &74 + 
�4
0 


:CAAA = *72 + 
+8��2 + 
.8��2 − &+8�73 + 
+8��3 + 
.8��3 − &.8�74 + 
+8��4 + 
.8��4
0              (7) 

 

Based on the geometric constrain, the constraints 

equations are derived:  

 &�� . &�: = 0 , &:� . &:: = 0 , &�� . 
� = 0 , &�: =&:: = � = &�� . 
� = 0 E��&:� . 
 : = 0(8) 

 

Lead to: 

 

10105 . 1�2�3�45 = 0                             (9) 

 

11005 . * 72 + 
�273 + 
�3 − &74 + 
�4
0  = 0                           (10) 

 

10105 . *72 + 
+8��2 + 
.8��2 − &+8�73 + 
+8��3 + 
.8��3 − &.8�74 + 
+8��4 + 
.8��4
0=0            (11) 

 

10105 . *72 + 
+8��2 + 
.8��2 − &+8�73 + 
+8��3 + 
.8��3 − &.8�74 + 
+8��4 + 
.8��4
0=0            (12) 

 

That means: 

 �3 = 0                                          (13) 

72 + 
�2 = 0                                         (14) 

 F73 + 
+8��3 + 
.8��3 − &.8�G = 0            (15) 

 F73 + 
+8��3 + 
.8��3 − &.8�G = 0            (16) 

 

Replacing the elements of the rotation matrix with 

corresponding expressions in Eq. (13), (14), (15) and 

(16), lead to: 

 ) = 0                                                                 (17) 

 72 = −
.,�./�                            (18) 

 73 = − �� F
+/� − &G(.8� + .8�)           (19) 

 

Note the motion along X and Y axes are limited 

motion and expressed as the function of variables (
, &, ��, ��, HE��I). These motions called parasitic 

motion and occur as a result of rotation the moving 

platform around u and v, i.e., H and I, respectively. 

Hence, the parallel manipulator has 3-DOF as 2-DOF 

rotations α and β around u and v axes, respectively and 

1-DOF translation on Z axis. 

For inverse kinematics solution, the three 

independent variables � = [ KHI]Mare given to find the 

actuated leg lengths, N = [ N�N�N:]M. The leg lengths can 

be determined by dot multiplying N� Eq. (6) with itself 

to yield: 

 N� = O
�O (i = 1, 2, 3)              (20) 

 

From Eq. (20), the leg lengths N�  (� = 1,2,3) are 

derived as: 

 N�� =  (72 + 
+8� (+H�+)� + .I�.H�.)�) + 
.8� (−+H�.)� + .I�.H�+)�) + +8�& + 73 +
+8�+I�.)� + 
.8�+I�+)� + +8�& + 74 +
+8� (−.H�+)� + +I�+H�.)�) + 
.8� (.H�.)� +.I�+H�+)�)). (72 + 
+8� (+H�+)� + .I�.H�.)�) +
.8� (−+H�.)� + .I�.H�+)�) + .8�& + 73 +
+8�+I�.)� + 
.8�+I�+)� + .8�& + 74 +
+8� (−.H�+)� + +I�+H�.)�) + 
.8� (.H�.)� +.I�+H�+)�))              (21) 

 N�� = 72� + 73� + 74� + 2
72(+H�+)� + .I�.H�.)�) +2
73+I�.)� + 2
74(−.H�+)� + +I�+H�.)�) −2&72 − 2&(+H�+)� + .I�.H�.)�) + 
� + &�(22) 

 N:� = (72 + 
+8� (+H�+)� + .I�.H�.)�) +
.8� (−+H�.)� + .I�.H�+)�) + +8�& + 73 +
+8�+I�.)� + 
.8�+I�+)� + +8�& + 74 +
+8� (−.H�+)� + +I�+H�.)�) + 
.8� (.H�.)� +
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.I�+H�+)�)). (72 + 
+8� (+H�+)� + .I�.H�.)�) +
.8� (−+H�.)� + .I�.H�+)�) + .8�& + 73 +
+8�+I�.)� + 
.8�+I�+)� + .8�& + 74 +
+8� (−.H�+)� + +I�+H�.)�) + 
.8� (.H�.)� +.I�+H�+)�))              (23) 

 

Hence, the length of the actuated legs can be 

determined by the square root of the Eq. (21), (22) and 

(23). The two possible solutions exist. Only positive 

values of N� are taken further because a negative 

solution is not physically possible. A positive values 

means that the actuator will result in the inward leaning 

of the constant length leg N�. 
 

Mechanism Jacobian: The Jacobian matrix defined a 

transformation from the velocity of the moving 

platform in Cartesian space to the actuated joint 

velocities of the parallel manipulator (Joshi and Tsai, 

2002). The relation between the joint motion q and the 

position of the moving platform, X, of the parallel 

manipulator is: 

 �(>, �) = 0                                                       (24) 

 

where, � is an n dimensional implicit function of X and 

q. Differentiating Eq. (24) with respect to time results 

in the following relationship: 

 PQ�R = PS>R >R = PST�PQ�R                          (25) 

 

where, PQ is an n x n Jacobian matrix (PQ = UVUQ ) and PS 

is an n x m Jacobian matrix (PS = UVUS). Both Jacobian 

matrices are depended on configuration of the parallel 

manipulator. The conventional Jacobian formulation is 

based on the closed loop vectorial relationship. The 

closed loop vectorial relationship defines the plan of 

movement but does not involve the type of the joints. 

The 3-DOF parallel manipulator has a motion in 

Cartesian space and has three legs as given: 

 �R = [KRHR IR ]M ; WR = [N�R N�R N:R ]M              (26) 

 

The vector loop system gives the following sum. 

 ��CAAAAA + ��?CAAAAAA = ��?CAAAAAAA + �?X?CAAAAAAAA             (27) 

 

Differentiating Eq. (27) with respect to time yields: 

 �' + �B × �� = N�� × .� + N�.�             (28) 

 

where, �� and .� denote the vector 7�?CAAAAAA and a unit vector 

along �?�?CAAAAAAA, respectively. ��  denotes the angular 

velocity of the �Z[ leg. Now, by dot multiplying both 

side of Eq. (28) by .�M. 

.�M . �' + (E� × .�M). �B = N?R             (29) 

 

Equation (29) can be written three times of the 

three legs from which the two from Jacobian can be 

deduced by using relationship given: 

 

P2 = *.�M (E� × .�)M.�M (E� × .�)M.:M (E: × .:)M0
:×\

 

andPS = 11 0 00 1 00 0 15
:×:

                                      (30) 

 

where, unit vector, .� can be defined using the equation: 

 .�]N�] = >� − ��              (31) 

 

Dexterity analysis of a parallel manipulator: 

Dexterity is an important issue for design, trajectory 

planning and control of parallel manipulator. Dexterity 

is defined as the ability of the manipulator to make 

accurate movement and is a measure of position 

accuracy of the moving platform of the parallel 

manipulator. The position accuracy means that if the 

manipulator is command to stop at a particular point in 

the workspace, then the deviation from the desired 

stopping point will give the position accuracy of the 

manipulator. The dexterity of the manipulator is 

dependent on the condition index of the Jacobian matrix 

(Merlet, 2006a). The condition index of the manipulator 

is a measuring the amplification of the error in order to 

the kinematic transformation between the Cartesian 

space and joint space. The error amplification factor, 

called the condition index CI, defined as: 

 ^_ = OPT�OOPO              (32) 

 

where, O. Odenotes to the norm. The norm of the 

Jacobian matrix and is defined as follows: 

 

OPO = `a
(�b PPM)                           (33) 

 

where, � is the dimension of the square matrix P. When 

the condition index approaches to a value of 1, a matrix 

is said to be well-conditioned and the dexterity reaches 

to maximum. On the other hand, when condition index 

is equal to positive infinity, the matrix is said to be ill- 

conditioned. Dexterity is very sensitive to structural 

parameters because of Jacobain matrix dependence on 

them (Rao et al., 2003). 

There are different types of norms which may 

constitute in the definition of the condition index. Some 

norms or condition index definitions are given below 

inorder to study the performance check within the 

manipulators workspace.  



 

 

Res. J. Appl. Sci. Eng. Technol., 12(2): 239-248, 2016 

 

243 

• Norm 2: Norm2 of the matrix defined as the 

square root of the ratio of the largest (cde2) to the 

smallest eigenvalues (cde2) of the Jacobian matrix. 

The lengths of the maximum and minimum 

eigenvectors are considered as an image of the 

maximum and minimum error amplification factor. 

Condition number based on norm-2 is denoted by 

C2 (Lopes et al., 2012): 

 ^2 = `fghifgjk                                                        (34) 

 

• Determinant (Cdet): Yoshikawa (1985) defined 

another measure of the manipulator performance 

called kinematic manipulability. PMPandPPM form 

square Jacobian from the original rectangular 

Jacobian P. The squared matrix can be inverted and 

determinants can be taken easily in the space. The 

manipulabilityindex is calculated (Rao et al., 2003) 

using this formula: 

 ^lmZ = ndet (PPM)                                        (35) 

 

Equation (36) shows another measure of 

manipulability or dexterity indices as compared to the 

more frequently used condition number based on norm-

2. 

 

• Frobenius norm: The Frobenius norm condition 

number (Golub and Van Loan, 2013; Horn and 

Johnson, 2012), sometimes also called the 

Euclidean norm is defined as the square root of the 

sum of the absolute squares of its elements. 

Condition number based on Frobenius norm is 

denoted by Cfro: 

 

OPOVr( = `� � sE�ts�t"bt"��"d�"�                          (36) 

 

• Norm 1: Norm 1 is defined as the largest absolute 

column sum for a square matrix A:  

 O�Ou = max  (O+yN��O�, O+yN��O�, … . . , O+yNb�O�)(37) 

 

where, A is PPM. Condition number based on norm-1 is 

denoted by C1. 

 

• Norm infinity: Norm infinity is defined as the 

largest absolute row sum for a square matrix A: 

 O�O∞ =max (O
y���O�, O
y���O�, … . . , O
y�b�O�)(38) 

 

where, A is PPM. Condition number based on norm 

infinity is denoted by Cinf. 

All types of condition numbers mentioned above 

can be compared for reliability and consistency to find 

the range of condition numbers in the evaluation of 

dexterity. The condition index depend on the Jacobian 

matrix are just local indices for a manipulator and 

global performance indices have been proposed to 

evaluate kinematic performance over the work space. 

Taking evaluation of a manipulator’s dexterity in the 

workspace, for example, many scholars have applied 

the statistical method to dexterity performance 

evaluation. A Global Dexterity Index (GDI) can be 

used to evaluate a manipulator throughout its own 

workspace and so it can be used for the optimal design 

of a parallel manipulator. A global dexterity index was 

defined by Gosselin and Angeles (1991) and Kucuk and 

Bingul (2006) as: 

 

{|_ = }( ~��)l��               (39) 

 

where, � is the total workspace volume. The GDI 

represents the uniformity of dexterity over entire 

workspace other than the dexterity at a certain 

configuration and can give a measure of kinematic 

performance independent of the different workspace 

volumes of the design candidates since it is normalized 

by the workspace size. 

 

RESULTS AND DISCUSSION 

 

 A program was written by MATLAB to evaluate 

dexterity. Table 1 shows the comparison of dexterity 

using different definitions of the condition index 

corresponding to several configurations. The condition 

index norm2 provides good index to identify structure 

singularities. 

Figure 2 shows the results obtained for the 

simultaneous variations of the radius of the moving 

platform and rotation of the moving platform on the u 

and vaxes with dexterity of the 3-DOF parallel  

manipulator. The parameters of design, such as size 

ratio of upper to lower platform radius (R/r = 3/2), 

height of the moving platform (h = 0.15 m) and joint 

location angle (�� = −30 , �� = 210), are kept fixed. 

The radius of the moving platform (r) is increased from 

0.15 m to 0.45 m. The global dexterity index increases 

with increased in the radius of the moving platform, 

while it has a little changes with varied rotation of the 

moving platform, H andI. The global dexterity index is 

maximal when the moving platform lies along the Z-

axis and deceases when the manipulator approaching to 

the boundary workspace. 

In Fig. 3, the platform size ratio (R/r) is varied for a 
selected configuration with dexterity of the 
manipulator. The manipulator height, joint location
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Table 1: Comparison of dexterity using different definition of condition index 

Configuration Height Α Β C2 Cdet Cfro CI Cinf 

1 0.0500 0.0000 0.0000 1.7102 2.3097 1.8158 2.5588 2.0126 
2 0.1000 0.0000 0.0000 1.7121 2.3113 1.8176 2.6020 1.9905 
3 0.1500 0.0000 0.0000 1.7138 2.3127 1.8191 2.6395 1.9741 
4 0.2500 0.0000 0.0000 1.7167 2.3146 1.8217 2.7009 1.9457 
5 0.1500 0.0000 5.0000 1.7133 2.3152 1.8194 2.6473 1.9669 
6 0.1500 0.0000 10.0000 1.7122 2.3184 1.8196 2.6520 1.9629 
7 0.1500 0.0000 15.0000 1.7106 2.3220 1.8195 2.6540 1.9620 
8 0.1500 0.0000 20.0000 1.7087 2.3260 1.8194 2.6533 1.9638 
9 0.1500 5.0000 0.0000 1.7145 2.3122 1.8195 2.6472 1.9740 
10 0.1500 10.0000 0.0000 1.7148 2.3123 1.8198 2.6563 1.9735 
11 0.1500 15.0000 0.0000 1.7150 2.3131 1.8202 2.6668 1.9727 
12 0.1500 20.0000 0.0000 1.7151 2.3144 1.8207 2.6785 1.9714 
13 0.1500 10.0000 10.0000 1.7145 2.3145 1.8202 2.6650 1.9639 
14 0.1500 10.0000 10.0000 1.7125 2.3094 1.8175 2.5991 2.0018 
15 0.1500 20.0000 20.0000 1.7094 2.3066 1.8151 2.5430 2.0425 
16 0.1500 20.0000 20.0000 1.7149 2.3149 1.8206 2.6778 1.9689 

 
 

(a) 

 

 
 

(b) 

 

Fig. 2: Effect radius of the moving platform on the dexterity of the 3-DOF parallel manipulator a) along u-axis; b) along v-axis  
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(a) 

 

 
 

(b) 

 

Fig. 3: Effect platform size ratio (R/r) on the dexterity of the 3-DOF parallel manipulator a) along u-axis; b) along v-axis  

 

angle (�� = −30,  �� = 180) and radius of the moving 

platform are kept fixed (r = 0.35 m). The varying the 

ratio (R/r) is varied from 1.5 to 3. The global dexterity 

index size decreases with increased in the ratio of 

radius (R/r) of the manipulator. The variation global 

dexterity index size is all symmetrical about plane α 

and β equal zero. 

The global dexterity index of the parallel 

manipulator is varied along orientation of the moving 

platform, α and β, at different heights with fixed the 

other design parameters (r = 0.35 m, R/r=3/2, �� =

−30, �� = 180) as shown in Fig. 4. The increasing of 

height of the parallel manipulator, the global dexterity 

index increases gradually. The variation of the global 

dexterity index is little symmetrical with rotation on u-

axis, while it increases with increased the rotation on v-

axis. 

The effect joint location is considered by changing 

locations of the joints on the moving platform as shown 

in Fig. 5. Design parameters, height, radius of the 

moving platform and platform size ratio, are fixed. The 

global dexterity index increases when the joint angle θ
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(a) 
 

 
 

(b) 
 

Fig. 4: Effect height on the dexterity of the 3-DOF parallel manipulator a) along u-axis; b) along v-axis  

 
increased and then deceased after 40o, while it has a 
little change with varied rotation angles on u and v 
axes.  
 

CONCLUSION 
 

A new constraint 2RPU+RPS parallel manipulator 
with 3-DOF corresponding to one translation on z-axis 
and 2DOF rotation represented by α and β, roatation on 
x-axis and y-axis, respectvelly was discussed. The 
inverse kinematic and Jacobian matrix of the parallel 
manipulator were derived. The condition number based 

on norm-2 was selected because it provides an index 
that is suitable for identifying the structure singularity. 
The global condition index is basically a weighted 
workspace wherein each elemental volume is weighted 
by the inverse of the condition number of the 
manipulator. Thus, the global condition index provides 
information about the quality of the manipulator 
workspace. The influence of the structural parameters 
of the parallel manipulator, such as the radius of 
themoving platform and base, height and joint location 
of the joints on the dexterity of manipulator were 
examined. The dexterity analysis of 3-DOF parallel
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Fig. 5: Effect joints location on the dexterity of the 3-DOF parallel manipulator a) along u-axis; b) along v-axis 
 

mechanism has significant value to its overall design. It 

not only helps to study the performance of parallel 

mechanism, but also offers theoretical basis in selecting 

the size of the components. The dexterity analysis 

provides necessary preconditions for the design and 

manufacture of its entity. 
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