
Research Journal of Applied Sciences, Engineering and Technology 12(2): 223-238, 2016
DOI:10.19026/rjaset.12.2324
ISSN:2040-7459; e-ISSN: 2040-7467
© 2016 Maxwell Scientific Publication Corp.

Submitted: July 2, 2015 Accepted: August 15, 2015 Published: January 20, 2016

Corresponding Author: Sanjay Saxena, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu
University, Varanasi, India

This work is licensed under a Creative Commons Attribution 4.0 International License(URL: http://creativecommons.org/licenses/by/4.0/).

223

Research Article
Parallel Image Processing Techniques, Benefits and Limitations

Sanjay Saxena,Shiru Sharma and Neeraj Sharma
School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University,

Varanasi, India

Abstract:The aim of digital image processing is to improve the quality of image and subsequently to perform
features extraction and classification. It is effectively used in computer vision, medical imaging, meteorology,
astronomy, remote sensing and other related field. The main problem is that it is generally time consuming process;
Parallel Computing provides an efficient and convenient way to address this issue. Main purpose of this review is to
provide the comparative study of the existing contributions of implementing parallel image processing applications
with their benefits and limitations. Another important aspect of this study is to provide the brief introduction of
parallel computing and currently available parallel architecture, tools and techniques used for implementing parallel
image processing. The aim is to discuss the problems encountered to implement parallel computing in various image
processing applications. In this research we also tried to describe the role of parallel image processing in the field of
medical imaging.

Keywords: GPU (Graphic Processing Unit), high performance computing, image processing, medical imaging,

parallel computing

INTRODUCTION

Now days, Image processing plays a very essential

role in numerous fields for example optics, computer
science, mathematics, surface physics and visual
psychophysics in case of computer vision its
applications include remote sensing, feature extraction,
meteorology, face detection, finger-print detection,
optical sorting, astronomy, argument reality,
microscope imaging, lane departure warning system
(Basavaprasad and Ravi, 2014). Sometimes it takes so
much time to execute several application for example
point to point processing of a gray scale image of size
1024 X 1024 requires a CPU to make more than one
million operations, for color image it is multiplied by
number of channels and in the processing of images
with high resolution (Olmedo et al., 2012).

In current years, parallel processing has become a
significant tool for implementing high speed
computing. For implementing this in image processing,
several research and contributions have been done till
now using several tool likes GPU (Graphical
Processing Unit), CUDA (Computed Unified Device
Architecture), Java, Hadoop and OpenCV and
MATLAB (2014) and many more. However, it is very
important to find most suitable technique of parallel
computing for a particular application of image
processing. In this review we have tried to overcome
this difficulty by analyzing numerous algorithms and
contributions by different scientists and researchers.

This study summarizes existing parallel image
processing techniques and tools implemented by
different scientists and researchers. In this study we
have also mentioned the benefits and limitations of the
existing contributions, architectures and tools of
parallel computing.

Image processing: Image is the two dimensional
distributions of tiny image points called as pixels. It can
be considered as a function of two real variables, for
example, f(x,y) with f as the amplitude (e.g.,
brightness) of the image at position (x,y) (Saxena et al.,
2013a). Image Processing is the process of enhancing
and manipulation with an image in order to extraction
of meaningful information (Olmedo et al., 2012). Image
processing has become a useful research area that goes
from professional photography to several different
fields such as Astronomy, Computerized photography
(e.g., photoshop), Space image processing (e.g., Hubble
space telescope images, interplanetary probe images)
Medical/Biological image processing (e.g.,
interpretation of X-ray images, blood/cellular
microscope images, CT Scan, PET Scan), Automatic
character recognition (zip code, license plate
recognition), Finger print/face/iris recognition, Remote
sensing: aerial and satellite image interpretations,
Reconnaissance, Industrial applications (e.g., product
inspection/sorting) (Kaur, 2013; Dougherty, 2009;
Kamboj and Rani, 2013; Drakos, 2014;Aoki and
Nagao, 1999). Thereare several techniques used in

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

224

Fig. 1: Basic flow diagram of the steps of image processing

(Bräunl, 2001)

image processing to enhance and extract information

from images. Several Authorscategorized image

processing into three groups (Soviany, 2003). Low

level image processing, Intermediate Level Image

Processing, High Level Image Processing(Aashburner

and Friston, 2005).

Low level image processing: It usually converts image

data into image data. Example Contrast Enhancement,

Noise Reduction, Filter Transformations, Calculations

of features of input images like contours, histogram etc.

Intermediate level image processing: These are more

complex operations which derive abstractions from the

image pixels like region labeling and object tracking.

High level image processing: This is knowledge based

processing which concerns the interpretation of the

information extracted from the intermediate level

processing for example Pattern Recognition, Object

Classification etc.(Soviany, 2003). Basic flow diagram

of the different steps of Image Processing given as

following (Drakos, 2014) in which different steps of

Image Processing such as Image Acqutition, Image

Preprocessing etc are in Fig. 1.

In this section we have seen about the different

basic steps of image processing now we are going to

give the brief description of parallel computing and its

importance in image processing.

PARALLEL COMPUTING AND ITS

ENVIRONMENT

Parallel computing or processing is the process of

simultaneous uses of various compute resources to
solve a computational job/task/work (Saxena et al.,
2013b). Main principle of parallel computing is to
divide a task in such a way that the task executes in
minimum time with maximum efficiency. To
implement parallel computing there can be several kind
of parallel machine like a cluster of computers which is

having multiple PCs combined together with an
elevated speed network; a shared memory
multiprocessor by connecting multiple processors to a
single memory system, a Chip Multi-Processor (CMP)
contains multiple processors (called cores) on a single
chip (Saxena et al., 2013c; Fung and Mann, 2008;
Edelman et al., 2006; Barney, 2014; Huang et al.,
2011). There are several application of high
performance or parallel computing in various fields
describes in Barney (2014). There are several
application area of parallel computing image
processing, Atmosphere, Earth, Environment, Applied
Physics, Nuclear, condensed matter Computer Science,
Mathematics, Electrical Engineering and Many more
discussed in Barney (2014)and Slabaugh et al. (2010).

Basic concepts of parallel computing: Barney (2014)

gave the basic terminology which are generally used in

parallel computing.

Node: It is an individual "computer in a box". Typically

it is comprised of numerous CPUs/Cores/Processors,

network interfaces, memory, etc. These are networked

simultaneously to encompass a supercomputer.

CPU/Processor/Core: Previously, a Central Processing

Unit was a particular execution part for a computer.

After that multiple CPUs were included into a node.

After that individual CPUs were subdivided into

numerous cores, each being an exclusive effecting unit.

Task: This is a logically distinct section of

computational effort. This is normally a program or set

of commands which is executed by a core/processor. A

parallel program, that consists of numerous tasks

running on many processors.

Pipelining: It is the breaking of a task or job into steps

performed by dissimilar processing units, in which

inputs streaming through like an assembly stripe.

Shared Memory: As per hardware point of view, it is

just like a computer architecture in which all

cores/processors have straight access to regular physical

memory. For programming point of view, it is a model

in which concurrent tasks are having the simmiler

picture of memory and it can directly address and

access the similar logical memory locations in spite of

the place where physical memory really exists.

Symmetric Multi-Processor (SMP): It is a hardware

architecture in which several processors share a solitary

address space and having capability to access all

resources; shared memory computing.

Distributed memory: For hardware point of view, it is

just like a network based memory access used for

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

225

Fig. 2: Amdahl’s law

physical memory. For programming terms, tasks can

just rationally see local machine memory and have to

use communications to access memory built in other

machines where added tasks are executing.

Communications: Parallel jobs classically need to

swap data. It can be accomplished by many ways, like

via a shared memory bus otherwise over a network,

though the real event of data exchange is normally

referred to as communications in spite of the method

employed.

Synchronization: It is defined as the synchronization

of parallel jobs in genuine time, very frequently linked

with communications. Habitually implemented by

establishing a coordination point within an application

where a job may not carry on further until a further

tasks reach the same or logically comparable point.

Synchronization generally consists of waiting by at

least one job and can therefore cause a concurrent

application's execution time to increase.

Granularity: In terms of parallel computing, It is a

qualitative measure of the proportion of computation to

communication.

Parallel overhead: That is the amount of time

necessary to coordinate parallel jobs, as contrast to

doing useful work.

Scalability: It refers to a parallel system's which is

having ability to divulge a balanced increase in parallel

speedup with the addition of additional compute

resources.

Performance measures: It is having a set of metrics

that is used for quantifying the quality of an algorithm

(Navarroet al., 2014). If we talk about the quality of

sequential algorithms it is usually evaluated in terms of

time and space (Rajaraman and Siva Ram Murthy,

2006; Dougherty, 2009). However for the quality of the

parallel algorithm it depends on the parallel architecture

and the number of processors employed. Here we are

going to describe the metrics and measures for

analyzing the performance of the parallel computing

system described by several authors.

Parallel run time: This is the time taken by a program
which is executed on an n-processor parallel computer.
When n = 1, T(1) denotes the sequential run time of the
program in single processor (Rajaraman and Siva Ram
Murthy, 2006).

Speedup (Navarroet al., 2014): This is the important
measures of parallel computing. Basically it measures
how much faster a parallel algorithm runs with respect
to the best sequential one. For a problem of size n, the
expression for speedup is:

�� = �(�,1)/�(�,�) (1)

where, Ts(n,1) is the time of the best sequential
algorithm (i.e., Ts(n,1) ≤ T(n,1)) and T(n,p) is the time
of the parallel algorithm with p processors, both solving
the same problem. Navarroet al. (2014) described when
speedup is linear, when it is super linear and the
different models of speedup like fixed time speedup,
fixed size and scaled speed up. Now we are going to
discuss speedup performance laws ie Amdahl’s law,
Gustafson’s Law, Sun and Ni’s law this is also known
as laws of speedup.

Amdahl’s law: It is often used to forecast the
theoretical highest speed up using numerous processors.
According to this Law “The speedup of a program
using numerous processors in parallel computing is
restricted by the sequential portion of the program”. For
example, for a program if 95% of that can be
parallelized, then the theoretical greatest speedup using
parallel computing would be 20 times as shown in the
following Fig. 2, it doesn’t matter the number of
processors are used.

Gustafson’s Law: This law says that increase of the
problem size for larger machines can retain scalability
with respect to the number of processors (Zhou et al.,
2012; Rajaraman and Siva Ram Murthy, 2006).

Sun and Ni’s Law: This one is referred to as a memory

bound model. It turns out that when the speedup is

computed by the problem size limited by the available

memory in n-processor system, it leads to a

generalization of Amdahl’s and Gustafson’s law (Zhou

et al., 2012; Rajaraman and Siva Ram Murthy, 2006).

Efficiency: It measures how the processors are

efficiently used in a parallel program. It can be

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

S
p

e
ed

u
p

1 2 4

1
6

3
2 6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2
7

6
8

6
5
5

3
68

Number of processors

50%
75%
90%
95%

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

226

expressed by the following equations (Zhou et al.,

2012; Rajaraman and Siva Ram Murthy, 2006):

�� =
��

�
=

�(
,�)

�
(
,�)
≤ 1 (2)

where, Sp is the speedup, Ep is the efficiency of an

algorithm with p processors and Ts(n,1) is the time of

the best sequential algorithm (i.e., Ts(n,1) ≤ T(n,1)) and

T(n,p) is the time of the parallel algorithm with p

processors, both solving the same problem. These

above are the chief performance measures of a parallel

program used by different researchers apart from these

there are other several other performance matrices are

like Navarroet al. (2014) described Work and Span,

Flops, Performance per Watt and Memory Bandwidth

as important metrics of measurement of parallel

program.

Need of parallel computing in image processing:

There are several studies have been till now which

describe the requirements of parallel computing in

image processing. As we have already discussed that

processing of a gray scale image of size 1024 X 1024

requires a CPU to make more than one million

operations for color image it multiplied by number of

channels (Olmedo et al., 2012). So efficiently

implementation of parallel computing can reduce the

processing time.

Several techniques of image processing requires

parallel computing described by different researchers

like working with Images with High resolution in Fung

and Mann (2008) authors described that Images of size

10000 X 10000 pixels requires sufficient computing

power to perform operations with in time. Akgün

(2013) described about the performance evaluations for

parallel Image filter on multi-core architectures using

Java Threads in this authors have developed image

convolution filters, Basic image processing techniques

like contrast enhancement, brightness improvement also

need high computation power as these are having

several time consuming steps, Alda Kika and Greca

(2013) also discussed applications of image processing

using java threads and many more researchers have

been done researches in this field till now. In the

following comparison of benefits and limitations we

have also discussed our previous developed approaches

(Saxena et al., 2013a).

In the next section we are providing a benefits and

limitations of the above given techniques by different

authors.

EXISTING LITERATURES FOR

IMPLEMENTING PARALLEL IMAGE

PROCESSING, BENEFITS AND LIMITATIONS

Following Table 1 illustrates the

benefits/advantages and Comments/improvement area

of the different contributions giving different

researches.

According to Table 1 we can see that till now there

have been developed numerous approach for

implementing parallel image processing using GPU,

CUDA, Hadoop, OpenCV, OpenCL and many more.

Some of them are very useful and informative.

However, there are some other methods also

implemented by different researchers which are not

described in Table 1.

Now we are going to give the brief comparison of

different parallel implemented image processing

algorithms GPU and CUDA in terms of time

Table 1: Analysis of different parallel implementation of image processing algorithms

Implemented image

processing concepts

Tools/Techniques used by

different researchers for

implementing parallel

image processing Benefits Comments References

Image convolution filters Multithreading using Java

on multi core computer

Good speed up and

parallel efficiency

with suitable

multithreading.

Ability to execute in

multi core computer

This method needs more data to

test with different performance

measuring parameters.

Akgün (2013)

Contrast enhancement,

brightness improvement and

steganography

Multithreading using Java

on multi core computer

Efficient use of

multithreading

using Java. Good

communication

between threads.

High level image processing needs

to be done for validation.

Kika and

Greca(2013)

Different Image Processing

application

Parallel Virtual

Machine(PVM) MATLAB

using Mex Files external

interface API and C

language on Linux OS

Not required

comprehensive

skills to write a

parallel program.

In this the software has been tested

to work with double matrices. Data

redistribution and data dependency

analysis need to be done.

Manjunathachari

and SatyaPrasad

(2005)

RGB to Gray conversion,

image morphology, integral of

image

CUDA Programming with

GPU

Speed up is good. Need to be tested variety of images

with large dimension.

Marwa et al.

(2014)

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

227

Table 1: Continue

Survey on CUDA This paper reviews all

different techniques of

parallel image processing

and gives brief

introduction of CUDA.

It gives brief

introduction of

GPU based parallel

image processing

and Brief

Introduction of

CUDA. In this

contribution critical

analysis has been

done with different

parallel algorithm

implemented

sequentially and

parallelly.

More algorithms need to be

evaluated.

Kaur and Nishi

(2010)

Geometrical transformation,

image De noising, Edge

detection

GPU with CUDA and

OpenGL

Significant speed

UP in most of the

algorithms, worked

on most time

consuming steps

Variety of images is not tested.

High level image processing needs

to be done.

Mahmoudi et al.

(2009)

Bilinear interpolation,

watershed segmentation and

volume rendering

MATLAB with Mex Files Efficient use of

MATLAB with

comparison with C.

Good programming skills needed,

now MATLAB pool can be used.

Bister et al.

(2007)

Graphic rendering for 3D

polygon model

GPU with CUDA Results are good. Need to test variety of rendering

data.

Ji-Hoonet al.

(2014)

Retinal Blood extraction using

Kirsch’s template

MATLAB with parallel

computing toolbox

Proficient use of

different core of a

system

Specific agenda has been done Roy (2013)

Gaussian, median, average

and motion filters

Digital signal processor Different

parameters like

time, MSE, PSNR,

Overlap Factor is

calculated

Lots of data need to be tested with

variety of images

Iqbal and

Raghuwanshi

(2014)

Basic image processing

concepts like sobel filters and

many more.

Image processing and

parallel computing toolbox

in MATLAB with GPU

and CUDA

Efficiently use of

the tools of

MATLAB

Needs different types of data to be

tested.

Georgantzoglou

et al. (2014)

Face detection algorithm CUDA integrated with

Hadoop distributed

network

Throughput is good. Need to show more results Malakar and

Vydyanathan

(2013)

K Means clustering Parallel computing toolbox

in MATLAB

Speed UP is good

working with CPUs

Need to implement this algorithm

with GPU to get significant results

other measuring parameters need to

be calculated.

Ahmed (2014)

Medical Imaging: Parameter

optimization for lung texture

using SVM, Content based

medical image indexing, 3D

directional wavelet analysis

Cluster of heterogeneous

computing nodes using

Hadoop

Optimization

performed better.

High level image

processing

algorithms are

tested.

Need to comparison of speedup

obtained.

Markonis et al.

(2012)

Morphological image

processing

Device Cyclone II

EP2C35F672C6, Image

Processing Libraries of

MATLAB

It used highly

parallel

configurable

architecture. Able to

execute a

morphological

operation in all of

the image

pixels in a single

cycle.

The work has been done only on

black and white images.

Pedrino and

Fernandes (2014)

Sobel edge detection, Hadoop Speed Up is good. Needs more different measuring

parameters to be calculated.

Fernandez and

Kumar (2009)

Medical image processing,

texture

feature calculations involving

the correlation of the data

with the Gabor and Gaussian

filters, FFT

MATLAB, Intel Parallel

Studio XE 2013 software

development kit, OpenMP

for multithreading and

Intel Math Kernel

Library

Efficient use of

Multicore with

tremendous speed

up.

More measuring parameters needs

to be tested.

Low (2013)

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

228

Table 1: Continue

Medical image processing,

image filtering algorithm with

FFT

Parallel Computing

toolbox, MATLAB, GPU,

CUDA

Efficient use of

PCT of MATLAB

using GPU and

CUDA.

More measuring parameters for

performance evaluation needs to be

tested.

Pan (2013)

Average filter Network of Sun SPARC

Station 5 workstations

connected with standard

(10Mbit/s)

Ethernet and Parallel

Image Processing toolkit

with MPI

Tested dynamic

load balancing

algorithm and

significant speed up

Needs to form cluster. Other

parameters of parallel computing

need to be tested.

Squyres et al.

(1995a)

Large scale mosaic and stereo

and stereo image correlations.

Message Passing

Interfaces(MPI)

Execution time is

drastically changed

by utilizing image

correlation quality.

Cluster of computer needed. Now,

it can be done by GPUs. It needs

more types of data to be tested.

Klimeck et al.

(2003)

Video database processed,

extraction of features from

video images

MapReduce on Hadoop Tremendous

extraction of

features.

Variety of data should be tested. Yamamoto and

Kaneko (2012)

Point operators, local

operators, ditherning,

smoothing, edge detection,

morphological operators &

image segmentation

Parallaxsis and it can be

used in data parallel

system

Several frequently

used image

processing

algorithm is

implemented with

good results.

In current scenario numerous tools

for implementing parallel image

processing are available.

Bräunl(2001)

Hyperspectral imaging Multi cluster system Remarkable speed

of all algorithms

Efficient use of GPUs can enhance

this implementation.

Fangbin et al.

(2011).

Face recognition IMAP-board Easy and efficient

way of

implementation.

Big set of data is requisite to test. Fatemi et al.

(2004)

Extraction of digital slices

from 3D images.

Computer-Aided

Parallelization tool, A pre

compiler containing C++

code

Several PCs are

connected

efficiently for good

results.

Variety of data is required. Gennart and

Hersch (1999)

Astronomical image

processing

Hadoop Performance is

good for

classifications.

Needs more different measuring

parameters to be calculated.

Wiley et al.

(2010)

Basic operations on image

enhancement

MATLAB Multicore computer

is fully utilized

Other high level image processing

algorithm need to be tested.

Kaur (2013)

Grayscale, brightening,

darkening, thresholding and

contrast change

CUDA as Programming

tool Implemented on GPU.

Significant speed up

with high resolution

images

Not so good performance for

images with low resolution

Olmedo et al.

(2012)

Restoration, deconvolution,

frequency domain

Multithreading using Java,

ImageJ, Parallel Colt

Variety of data has

been tested with

good results.

Computational proficiency needed Wendykier

(2003).

Mosaicing of images for

preclinical research.

ITK library,

Implementation is done by

using C and C++

languages, Cluster of 8

quad cores.

In this image

processing tasks are

wrapped into

objects which are

passed to the

parallel engine. The

engine is able to

exploit

data and task

parallelism when

executing the tasks

on multicores,

clusters and/or

GPUs

High level image processing

functions need to be implemented

with variety of data sets.

Lemeire et al.

(2009)

JPEG

Image encoding and binary

image processing, edge

detection, hole filing

Massively parallel

Processor arrays

Efficient

Implementation of

hole filling and

edge detection.

Needs to be tested variety of

images.

Osorio et al.

(2009)

Nuclei detection on

hematoxilin eosin (HE)

stained colon tissue sample

images

CUDA as Programming

tool Implemented on GPU

Good speed UP

with GPU over

CPU

Other measuring parameters of

parallel computing need to be

calculated.

Reményi et al.

(2011)

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

229

Table 1: Continue

Histogram computation,

Removing clouds and

calculation of DCT

CUDA as Programming

tool Implemented on GPU

Direct comparison

with sequential and

parallel versions

Significant speed up

Variety of images needs to be

tested.

Yang et al.

(2008)

Image Processing

applications: Average filtering

Parallel Image Processing

Toolkit

Significant speed up

for large images. It

is portable to

different

programming

environments.

Parallelization up to

greatest extent.

It needs cluster of workstations to

implement this research.

Squyres et al.

(1996)

Point operators, Arithmetic

and logic operations, Local

neighborhood operators,

Global operators

C using MPI-Panda library Data and Task

Parallelization has

been done. Code

can be easily used

by parallel libraries.

High level image processing

algorithm need to be tested

Nicolescu and

Jonker (2002)

Colour to Black & White,

Edge Detection, Convolution

Masks

Handel-C(C Like

Language) and DK

Make efficient use

of parallellism

Diverse applications of image

processing needs to be

implemented.

Bouganis (2014)

Image Processing Toolbox

(PIP)

Message Passing Modal is

designed using MPI

standard, Cluster of

Workstation

Several Tested

Parameters are

having significant

result.

This research needs Cluster of

Workstations to implement.

Squyresy et al.

(1998)

SIFT Keypoint Matching,

Histogram Matching and

Arithmatic Intensity Analysis

CUDA, GPU and Open CL Varity of Data is

tested with

significant result.

High level image processing

algorithm need to be tested.

Connors (2013)

Calculation of Mutual

Information

Using Parallel Computing

toolbox of MATLAB

Significant results

using Multi Core

computer

Registration needs to be done. Saxena et al.

(2014a).

Deblurring, Matrix

factorization,

and tomography

SIMD Parallel Processors,

GPU

Good results

obtained.

Variety of data needs to be tested. Brand and Chen

(2011)

Motion, Edge, Line Detection,

Optical flow based tracking.

Open CV Library Performance is

significant.

Variety of data needs to betested. Gregori (2012)

Binarization, Copy,

Transpose, Blur, sobel,

erosion, dilation, gradient,

sum, max/min, histogram,

mean

CUDA with GPU Software as well as

Hardware

Efficiency Tested

with significant

result.

Needs more high level image

processing to be done.

Nugteren et al.

(2011)

Segmentation by Region

Growing, Global

Thresholding, Noise

Reduction and Histogram

Equalization

Parallel Computing

toolbox in MATLAB with

Multi Core Computer

Speed UP is

significant

Higher level image processing

algorithms need to be tested.

Saxena et al.

(2013b)

Segmentation of Abdominal

Image

Parallel Computing

toolbox in MATLAB with

Multi Core Computer

Speed UP is good

and Intelligent

Method to utilize

cores

Other parameters need to be

calculated

Saxena et al.

(2013c)

Cellular Image Segmentation

and Calculation of Statistical

Features.

Parallel Computing

toolbox in MATLAB with

Multi Core Computer

Region wise

utilization of cores.

Different variety of images are

required to Test.

Saxena et al.

(2013a)

Sobel Edge Detection and

Homomorphic Filtering

CUDA implemented on

GPU

Remarkable Speed

UP

More complex algorithm of image

processing is not evaluated

Zhang et al.

(2010)

Segmentation using Region

Growing

CUDA enabled GPU Significant Speed

UP

Variety of images need to be tested

with different size.

Happ et al.

(2012)

consumption in CPUs as well as in GPUs. Kaur (2013)

have been already done this study. In the following

Table 2 we are just adding study of some more

algorithms, which will be very helpful for the

researchers to study different image processing

algorithms in terms of speed up.

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

230

Table 2: Analysis of the Comparison of Execution Time of different image processing algorithms in CPU and GPU

Image processing
algorithms Reference Platform used Size

CPU

(Executing
time) in ms

GPU

(Executing
time)

Brightening image
transformation

Olmedo et al.
(2012)

AMD Phenom II Quad-core to 3.2 GHz,
12 GB of RAM,
Operating System: 64-bit Linux Fedora 14
GPU: GeForce 430 GT
video card with 96 cores and 1 GB of RAM
DDR3 is used

256×256 8.847117 0.19903

 512×512 36.12278 0.761405
 1024×1024 142.6773 2.995606
 1800×1400 342.4271 7.20223
 4000×3000 1610.854 33.97197
Darkening image
transformation

Olmedo et al.
(2012)

Same as above 256×256 9.5512192 0.2016992

 512×512 38.731661 0.7718848
 1024×1024 151.256079 3.0336608
 1800×1400 336.17552 7.2744512
 4000×3000 1719.52881 34.4515743
Inverse sinusoidal
contrast
transformation

Olmedo et al.
(2012)

Same as above 256×256 11.26008 0.203088

 512×512 46.3111264 0.776816
 1024×1024 184.731943 3.057152
 1800×1400 448.714719 7.3071904
 4000×3000 2040.16223 34.6397216
Hyperbolic tangent
contrast
transformation

Olmedo et al.
(2012)

Same as above 256×256 5.681072 0.1872896

 512×512 22.7657601 0.7213312
 1024×1024 91.6525903 2.823536
 1800×1400 219.788937 6.8108832
 4000×3000 1054.94413 32.2680701
Sine contrast
transformation
execution times

Olmedo et al.
(2012)

Same as above 256×256 12.5076096 0.2077856

 512×512 51.3341637 0.7901344
 1024×1024 205.06483 3.1164224
 1800×1400 500.958685 7.4421792
 4000×3000 2273.02695 35.2699835

Linear feature

extraction

Park et al.

(2011)

CPU: Q9450 with 42.56 GFLOPS

GPU: NVIDIA G92 (GeForce 9800 GTX) with

128 Cores and 512 MB Video Memory, GTX

280 for Speed UP Test

512×512 109 54.77

 1024×768 422 166.63

 1280×1024 610 250.42

 1200×1800 1250 471.88

 2278×1712 2375 1018.98

JPEG2000

encoding (DWT

Park et al.

(2011)

Same as above 512×512 31.85 7.84

 1024×768 150.60 20.72

 1280×1024 164.50 31.17

 1200×1800 264.93 51.52

 2278×1712 471.66 91.08

 3024×2089 754.95 142.45

JPEG2000

encoding (Tier-1)

Park et al.

(2011)

Same as above 512×512 94 205

 1024×768 234 390

 1280×1024 328 484

 1200×1800 891 735

 2278×1712 1640 1468

 3024×2089 1500 2062

Cartoon style NPR Park et al.

(2011)

Same as above 512×512 4594 49.31

 1024×768 14594 149.66

 1280×1024 18688 243.35

 1200×1800 47688 406.53

 2278×1712 93891 741.42

Oily style NPR Park et al.

(2011)

Same as above 512×512 7172 87.77

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

231

Table 2: Continue

Image processing
algorithms Reference Platform used Size

CPU
(Executing
time) in ms

GPU
(Executing
time)

 1024×768 15609 226.22

 1280×1024 35313 334.83

 1200×1800 49047 589.78

 2278×1712 94406 1107.12

Multiview stereo

matching

Park et al.

(2011)

Same as above Temple ring

(47 Images)

18422 340

Corners and edge

detection

Squyres et al.

(1995b)

OS: Ubuntu 11.04

CPU: Dual Core 6600, 2.40 GHz, Mem: 2 GB

GPU: GeForce GTX 280, 240 CUDA cores,

Memory: 1GB

GPU: Tesla C1060, 240 CUDA cores, Memory:

4GB

2048×2048 4006 1240

Content

authentication

Lin et al.

(2011).

CPU Intel Xeon 5520 (2.26GHz)

RAM 12GB DDR3 (1333MHz)

GPU Architecture Tesla C1060

OS Centos 5.3 (64 bit) V2.3

CUDA

1024×1024 28877.66 903.83

Binarize Nugteren

et al. (2011)

Intel Core-i7 930, GPU: Geforce GTX470 GPU

with 448 CUDA cores

2048×2048 106 0.34

Copy Same as above Same as above 2048×2048 99 0.34

Transpose Same as above Same as above 2048×2048 88 0.50

Blur Same as above Same as above 2048×2048 208 0.74

Sobel Same as above Same as above 2048×2048 230 1.21

Erode Same as above Same as above 2048×2048 151 0.65

Dilate Same as above Same as above 2048×2048 445 1.67

Gradient Same as above Same as above 2048×2048 432 1.45

Sum Same as above Same as above 2048×2048 37 0.28

Max Same as above Same as above 2048×2048 41 0.57

Min Same as above Same as above 2048×2048 41 0.56

Histogram Same as above Same as above 2048×2048 213 0.47

PARALLEL ARCHITECTURE, TOOLS AND

TECHNIQUES AVAILABLE FOR

IMPLEMENTING PARALLEL IMAGE

PROCESSING

In previous section we have seen that several

authors have implemented different techniques or
algorithms parallally using different architectures and
tools like MATLAB, CUDA, Hadoop and Many more.
Now we are going to give brief description of these
techniques with their advantages and disadvantages
(Hadoop Advantages and Disadvantages, 2015).

GPU (Graphical Processing Unit): It is a graphical

processing unit. A CPU contains few cores while GPU

contains thousands of cores. As it is shown in the

following Fig. 3.

It is also known as Visual Processing Unit (VPU).

GPU has hundreds of cores while newest CPU’s

contain 4 or 8. At present a major challenge in image

processing is that several applications of it need high

computational power to attain high precision and real-

time performance which is not easy to achieve by using

CPU. Every NVIDIA GPU has 8 to 240 parallel cores,

each core are having four units named floating point

unit, logic unit (for add, sub, mul, madd), move and

compare unit, branch unit. Cores in GPU are managed

by Thread manager which can manage 12,000+ threads

per core. GPU has been developed into a very bendable

Fig. 3: Architecture of CPU and GPU [NVIDIA’s Article]

and controlling processor, which can be implemented

by using high level languages. GPU supports 32-bit and

64-bit floating point IEEE-754 precision and offers lots

of GFLOPS (Applications 2014).Srinivasan (2009) 8

series GPU deliver 25 to 200+ GFLOPS on compiled

parallel C applications which are available in laptops,

desktops and clusters. It is noticed that GPU parallelism

is doubling every year. GPU provide high

computational density (uses 100s of ALUs) and

memory bandwidth (100+GB/s) (Nickolls, 2007).

Where GPU executes kernel code and CPU executes

serial code in the program. This reduces the execution

time of the program. In this way while doing

calculations by GPU, CPU time cycles can be used for

other high priority tasks (Kaur and Nishi, 2010).

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

232

Advantages/Benefits: Benefits of using GPUs given in

(Kaur and Nishi, 2010; Tariq, 2011) are following:

• It condensed power consumption

• GPUs are genuinely programmable and hold up

high precision that is 32 bit floating point

throughout the pipeline

• It provides portability, programmability, flexibility

• In GPU computing model CPU and GPU work

together in a heterogeneous co- processing

computing model

Limitations/Drawbacks: In Kaur and Nishi (2010) and

Ruetsch and Oster (2008) there are some drawbacks are

given as following:

• Gaining this speedup requires that algorithms are

coded to reflect the GPU architecture and

programming for the GPU differs significantly

from traditional CPUs. In particular, incorporating

GPU acceleration into pre-existing codes is more

difficult than just moving from one CPU family to

another; a GPU-savvy programmer will need to

dive into the code and make significant changes to

critical components.

• Incorporating GPU hardware into systems adds

expense in terms of power consumption, heat

production and cost. Some job mixes may be

served more economically by systems that

maximize the number of CPUs that can be brought

to bear.

CUDA (Computed Unified Device Architecture): It

is scalable parallel programming model and a software

environment specifically used for parallel computing

(Inam, 1994). CUDA is a parallel programming

standard which is released in NVIDIA (2007).

Generally, it is used to develop software that are used

for graphics processors and is used to build up a

diversity of general purpose applications for GPUs that

are tremendously parallel and run on hundreds of

GPU’s processors or cores. It uses a language that is

very analogous to C language and has a high learning

curve. It has some extensions to that language to use the

GPU-specific features that include new API calls and

some new type qualifiers that apply to functions and

variables. It has some definite functions, which is called

as kernels. It can be a function or a full program

invoked by the Central Processing Unit. It also provides

common memory and synchronization among threads.

It is supported only on NVIDIA’s GPUs based on Tesla

architecture. The graphics cards that support CUDA are

GeForce 8-series, Quadro and Tesla (Kaur and Nishi,

2010; Inam, 2010). Heterogeneous architecture of

CUDA is given in Inam (2010) and Saxena et al.

(2014b). Working details of CUDA is given in Kaur

and Nishi (2010).

Fig. 4: Life cycle of thread

Advantages/Benefits (Kaur and Nishi, 2010):

• It is specifically designed to run for non graphic

purposes.

• Its software development kit includes libraries,

various debugging, profiling and compiling tools.

• In this programming task is simple and easy as

kernel calls are written in C-like language.

• Provides faster downloads and read backs to and

from the GPU.

• It exposes a fast shared memory region (up to 48

KB per Multi-Processor).

Limitations/Drawbacks (Kaur and Nishi, 2010):

• It is constrained to NVIDIA GPU’s only.

• It runs its host code through a C++ compiler so it

doesn’t support the full C standard.

• Texture rendering is not supported in it.

Multithreading using Java: A thread is a dispatchable

unit of work. Threads are light-weight processes within

a process. A process is a collection of one or more

threads and associated system resources. Java supports

thread-based multitasking. Multithreading is the

conceptual programming concepts when a program

(process) is divided into two or more sub programs that

can be implemented at the same time. A multithreaded

program is having two or more parts that can run

concurrently. Each part of such program is called

thread. A thread is a dispatchable unit of work. Threads

are light-weight processes within a process. A process

is a collection of one or more threads and associated

system resources. Java supports thread-based

multitasking (Chapter Multithreaded Programming,

2015; Jain, 2015). Life cycle of thread is shown in the

following Fig. 4.

In java we can construct single-thread as well as

multi-thread application with it. A multi-threaded

program in java has many entry and exit points, which

are run concurrently with the main () method.

Imageprocessing Applications can be implemented

using single thread approach and multithreading

approach by different contributors. In [Article] the

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

233

multithreading approach the shared memory in which

the threads operate is the matrix of the image pixels. It

can be used the Java packages to grab the pixel matrix

of the image that has to be processed. Then different

threads manipulate different parts of the matrix

depending on the algorithm. The work task and the part

of the matrix that each thread has to manipulate are

determined by the main thread. The time that is

necessary to manipulate the entire matrix either by a

single thread or by all the threads is registered.

Advantages/Benefits: Benefits of using Multithreading

are given below defined in Jain (2015):

• Threads share the same address space

• Generally Context-switching among threads is

usually economical

• It is found that communication between threads is

normally inexpensive

• It improved performance and concurrency

Limitations/Drawbacks (Java Tutorialsand

Projects,2015):

• Mostly multithreaded programs are not easy to

write. Only experienced programmers should

undertake coding for these types of applications.

• It is much harder to replicate an error in a

multithreaded or multicontexted application than it

is to do so in a single-threaded, single-contexted

application. As a result, it is more difficult, in the

former case, to identify and verify root causes

when errors occur.

• In this numerous threads can hinder with every

other at the time of sharing hardware resources of

hardware caches or Translation Look a side Buffers

(TLBs).

• Execution times for a solo thread are not enhanced

but can be degraded; still when only a single thread

is executing. This is done because of slower

frequencies and/or extra pipeline stages which are

required to accommodate hardware containing

thread switching.

• Support especially of hardware for multithreading

is more observable to software, that requires more

changes to application programs and OS (operating

systems) than multiprocessing.

Hadoop: It is an open source software project that

enables the parallel processing of huge data sets among

clusters of commodity servers. Hadoop is specially

designed to scale up from a single server to

thousands/several of machines, with a very high degree

of fault lenience. Rather than relying on high-end

hardware, the resiliency of these clusters comes from

the software’s ability to observe and handle failures at

the application layer (Hadoop Introduction, 2015).

Advantages/Benefits (Hadoop Introduction, 2015;

big data concept):

• New nodes can be added as needed and added

without needing to change data formats, how data

is loaded, how jobs are written, or the applications

on top.

• Hadoop brings extremely concurrent computing to

commodity servers. The result is a generous

decrease in the cost per terabyte of storage, which

in turn makes it reasonable to model all your data.

• It is schema-less and can soak up any type of data,

structured or not, from any numeral of sources.

Data from numerous sources can be connected and

aggregated in random ways enabling deeper

analyses than any one structure can provide. When

we lose a node, the system redirects effort to

another position of the data and continues

processing without missing a fright hit.

Limitations/Drawbacks (Hadoop Introduction,

2015):

• Hadoop Map-reduce and HDFS are rough in

manner because the software under active

development.

• Programming Model is very restrictive.

• Joins of multiple data sets are tricky and slow.

• Cluster management is hard.

• Still single master which requires care and may

limit scaling.

• It is not fit for small data.

• It is having potential instability issues.

Parallel computing tool box in MATLAB

(MATLAB Intro):MATLAB is extensively used for

developing/prototyping algorithms. It is having several

toolbox as image processing, signal processing, neural

network toolbox and many more. Matlab 2010a

onwards finally enables the “Parallel Computation

Toolbox” for student use. By using this we can solve

computationally and data-intensive tasks using

multicore processors, GPUs and clusters of computer.

We can parallelize applications of MATLAB without

using CUDA or MPI programming. It contains High

level constructs for example parallel for-loops,

particular array types and parallelized arithmetical

algorithms. The toolbox lets us use the full processing

power of multicore desktops by executing applications

on workers (MATLAB computational engines) that run

locally. Without changing the code, we can execute the

same applications on a computer cluster or a grid

computing service (MATLAB Distributed Computing

Server™). We can run parallel applications

interactively or in batch. Built-in Parallel Computing

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

234

Support in MathWorks Products MATLAB Distributed

Computing Server for Amazon EC2-Early Adopter

Program (Mathworks, Parallel Computing Toolbox,

2015).

Advantages/Benefits:

• It contains Parallel for-loops (parfor) that is used

for running task/job parallel algorithms on

numerous cores/processors.

• It provides support for CUDA and enabled

NVIDIA GPUs

• It uses fully utilization of multi core processors on

the desktop using workers that run locally

• Computer cluster and grid support is provided by

MATLAB Distributed Computing Server.

• Interactive and batch execution of parallel

tasks/applications/jobs can be done by MATLAB.

• Distributed arrays and (SPMD) single program

multiple data build for big dataset handling and

data parallel algorithms.

Drawbacks/Limitations (article of MATLAB):

• Due to high level nature of MATLAB, it uses a lot

of system resources.

• MATLAB is built on Java and Java is built upon C.

So when we run a MATLAB program, our

computer is busy trying to interpret all that

MATLAB code. That consumes extra time.

OpenCL: Open Computing Language (OpenCL) is an

open and royalty free parallel computing API designed

to enable GPUs and other co processors (Article of

Open CL) It is a standard for large scale parallel

processing, it can help image processing but it is very

low level and is designed for simplify the way to take

advantage of many cpu cores and GPU stream

processors.

Advantages/Benefits [Guide Open CL][Intro of

Open CL]:

• Cross vendors software portability

• It Provides substantial acceleration in parallel

programming.

Disadvantages/Limitations [Guide Open CL][Intro

of Open CL]:

• It is not trouble-free to be trained.

OpenCV: OpenCV is an Image Processing library

created by Intel and maintained by Willow

Garage(Smith,2014). OpenCV is a library for computer

vision, includes a lot of generic image processing

routines and high level functions to support face

recognition etc. It is available for C, C++ and Python.

Several algorithms of image processing can be easily

implemented by using this.

Advantages/Benefits:

• Easy to use and Install

• Open Source and Free

Disadvantages/Limitations:

• It is not easy to become skilled in Open CV (2014)

Parallel image processing in medical imaging: Kadah

et al. (2011), Xu and Thulasiraman(2011), Schweiger

(2011), Kim et al. (2010), Eklund et al. (2011a),

Twardet al. (2011), D’Amore et al.

(2011),Thiyagalingamet al. (2011)and Kadah et al.

(2011).

Parallel Image Processing plays a very vital role in

Medical Imaging. It is a rapidly growing interest in

parallel computation application in various medical

imaging applications. This inclination is estimated to

carry on as more sophisticated and challenging medical

imaging and high-order data visualization problems.

Till now there have been done several research of

parallel image processing in different medical image

modalities like MRI, CT, PET, X-Ray, Ultrasound and

Optical tomography as processing of these images

requires numerous image processing algorithms like

diffeomorphic mapping, image denoising, image

reconstruction, motion estimation, deformable

registration and modeling. Kadah et al. (2011)

summarizes various parallel implementation of image

processing techniques like an accelerated algorithm for

brain fiber tracking, a new 3D deformable registration

algorithm for mapping brain datasets, low

computational efficiency of the conventional active

shape model (ACM) algorithm and exploitation of the

potential acceleration achieved when ACM is

implemented on a parallel computation architecture,

investigation of the potential of parallel computation in

accelerating the image algebraic reconstruction

techniques, a GPU-accelerated finite element solver for

the computation of light transport in scattering media,

investigation of the different throughput-oriented

architectures can benefit Compressed Sensing (CS)

MRI reconstruction algorithm and what levels of

acceleration are feasible on different modern platforms,

implementation of a four-dimensional denoising

algorithm on a GPU, an accelerated automated process

for creating complete patient specific pediatric

dosimetry phantoms from a tiny set of segmented

organs in a child’s CT scan, solution of nonlinear

Partial Differential Equations (PDEs) of

diffusion/advection type, fundamental most problems in

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

235

image analysis, mapping of an enhanced motion

estimation algorithm to novel GPU architectures,

Eklund et al. (2011b) it is shown that how the

computational power of cost-efficient GPUs can be

used to speed up random permutation tests, Parallel

computing in Radiotherapy planning. In spite of these

several studies based on parallel medical image

registration has been done till now.

CONCLUSION

As we have discussed above that parallel

computing is having very important significance in

several image processing techniques like edge

detection, histogram equalization, noise removal, image

registration, image segmentation, feature extraction,

different optimization techniques and many more. In

the field of medical imaging it also play a significant

role. In current years a broad variety of approaches

have been proposed for parallel image processing

having their benefits and limitations. The present

review provides the brief introduction of image

processing techniques, different tools and techniques of

computing parallel image processing with their

respective features and limitations as mentioned in

Table 1. Parallel Architectures, tools and techniques of

parallel image processing is also discussed in this

review with their advantages and limitations as in Table

2. It can be used in different applications of image

processing on the basis of its appropriateness,

performance, computational cost on the basis of time,

applicability. As discussed parallel implementation of

Image processing find to be great area of interests by

different researchers because of its performance,

suitability and availability. We saw that some

techniques find to be limited applications and needs

more computational knowledge. However, their

performance can be improved by implementing them

intelligently for example integration of the concepts of

java’s multithreading with MATLAB can give the

significant results. Finally, we have also discussed

applications of parallel image processing in medical

imaging in this review and highly preferred to employ

parallel image processing in various techniques of

medical imaging for fast and efficient results for

treatment planning.

REFERENCES

Aashburner, J. and K. Friston, 2005. Unified

segmentation. Neuroimage, 26(3): 839-851.

Ahmed, M.F., 2014. Parallel implementation of K-

means on multi-core processors. Comput. Sci.

Telecommun., 41(1): 52-60.

Akgün, D., 2013. Performance evaluations for parallel

image filter on multi-core computer using java

threads. Int. J. Comput. Appl., 74(11): 13-19.

Aoki, S. and T. Nagao, 1999. Automatic construction of

tree-structural image transformations using genetic

programming. Proceeding of the Conference on

Image Analysis and Processing.Venice, pp: 136-

141.

Barney, B., 2014. Introduction to Parallel Computing.

Retrieved from: https://computing.llnl.gov/

tutorials/parallel_comp/.

Basavaprasad, B. and M. Ravi, 2014. Study on the

importance of image processing and its

applications. Int. J. Res. Eng. Technol., 3: 155-160.

Bister, M., C.S. Yap, K.H. Ng and C.H. Tok, 2007.

Increasing the speed of medical image processing

in MATLAB. Biomed. Imaging Interv. J., 3(1): e9.

Bouganis, C., 2014. Parallel Image Processing: An

Introductory Lecture to the Project. Retrieved

from:

https://www.google.com.pk/url?sa=t&rct=j&q=&e

src=s&source=web&cd=1&cad=rja&uact=8&ved=

0CBsQFjAAahUKEwiimvqMybnHAhVBuhoKH

WBQBBs&url=http%3A%2F%2Fcas.ee.ic.ac.uk%

2Fpeople%2Fccb98%2Fteaching%2FHandelC%2F

ProjDocPresentation.pdf&ei=ScjWVeLRCsH0auC

gkdgB&usg=AFQ.

Brand, M. and D. Chen, 2011. Parallel quadratic

programming for image processing. Proceeding of

the 18th IEEE International Conference on Image

Processing (ICIP). Brussels, pp: 2261-2264.

Bräunl, T., 2001. Tutorial in data parallel image

processing. Aust. J. Intell. Inform. Process. Syst.,

6(3): 164-174.

Chapter Multithreaded Programming, 2015. Retrieved

from: http://www.buyya.com/java/Chapter14.pdf.

Connors, D., 2013. Exploring Computer Vision and

Image Processing Algorithms in Teaching Parallel

Programming. Retrieved from:

https://www.google.com.pk/url?sa=t&rct=j&q=&e

src=s&source=web&cd=1&cad=rja&uact=8&ved=

0CCAQFjAAahUKEwj07_Tg0LnHAhVC1BoKH

RuwCcU&url=http%3A%2F%2Fgrid.cs.gsu.edu%

2F~tcpp%2Fcurriculum%2Fsites%2Fdefault%2Ffi

les%2FTeaching%2520Parallel%2520Programmin

g%2520Usin.

D'Amore, L., D. Casaburi, L. Marcellino and A. Murli,

2011. Numerical solution of diffusion models in

biomedical imaging on multicore processors. Int. J.

Biomed. Imaging, DOI: 10.1155/2011/680765.

Dougherty, G., 2009. Digital Image Processing for

Medical Applications. Cambridge University Press,

Cambridge, pp: 462, ISBN: 1139476297.

Drakos, N., 2014. Computer Based Learning Unit.

University of Leeds and Ross Moore, Mathematics

Department, Macquarie University, Sydney.

Retrieved from:

http://fourier.eng.hmc.edu/e161/lectures/introducti

on/index.html.

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

236

Edelman, A., P. Husbands and S. Leibman, 2006.
Interactive supercomputing’s star-P platform:
Parallel MATLAB and MPI homework classroom
study on high level language productivity. HPEC.
Retrieved from:
http://www.ijcaonline.org/archives/volume113/nu
mber3/19807-1598.

Eklund, A., M. Andersson and H. Knutsson, 2011a.
True 4D image denoising on the GPU. Int. J.
Biomed. Imaging, DOI: org/10.1155/2011/952819.

Eklund, A.,M. Andersson and H. Knutsson, 2011b. Fast
random permutation tests enable objective
evaluation of methods for single-subject fMRI
analysis. Int. J. Biomed. Imaging, DOI:
org/10.1155/2011/627947.

Fangbin, L., J.S. Frank and A. Plaza, 2011. Parallel
hyperspectral image processing on distributed
multicluster systems. J. Appl. Remote Sens., 5: 1-
14.

Fatemi, H., H. Corporaal, T. Basten, P. Jonker and R.
Kleihorst, 2004. Implementing Face Recognition
Using a Parallel Image Processing Environment
Based on Algorithmic Skeletons. Retrieved from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.10.7759

Fernandez, B.A. and S. Kumar, 2009. Distributed
Image Processing Using Hadoop Map Reduce
Frame Work, Retrieved from:
http://search.iiit.ac.in/cloud/presentations/26.pdf.

Fung, J. and S. Mann, 2008. Using graphics devices in
reverse: GPU-based image processing and
computer vision. Proceeding of the IEEE
International Conference on Multimedia and Expo.
Hannover, pp: 9-12.

Gennart, B. and R.D. Hersch, 1999. Computer-aided
synthesis of parallel image processing applications.
Proceeding of the SPIE International Symposium
on Optical Science, Engineering and
Instrumentation. Denver, Colorado, 3817: 48-61.

Georgantzoglou, A., S. Joakim da and J. Rajesh, 2014.
Image Processing with MATLAB and GPU. DOI:
org/10.5772/58300

Gregori, E., 2012. Introduction to Computer Vision
using Open CV. Proceeding of the Embedded
Systems Conference in San JoseBerkeley Design
Technology, Inc.Oakland, California USA.

Hadoop Advantages and Disadvantages, 2015.
Retrieved from: http://www.j2eebrain.com/java-
J2ee-hadoop-advantages-and-disadvantages.html.

Hadoop Introduction, 2015.IBM. Retrieved from:
http://www-
01.ibm.com/software/data/infosphere/hadoop/.

Happ, P.N., R.Q. Feitosa, C. Bentes and R. Farias,
2012. A parallel image segmentation algorithm on
gpus. Proceeding of the 4th GEOBIA. Rio de
Janeiro-Brazil, pp: 580.

Huang, T.Y., Y.W. Tang and S.Y. Ju, 2011.
Accelerating image registration of MRI by GPU-
based parallel computation. Magn. Reson. Imaging,
29(5): 712-716.

Inam, R., 1994. An Introduction to GPGPU

Programming-CUDA Architecture. Retrieved

from:

http://www.es.mdh.se/pdf_publications/1994.pdf.

Inam, R., 2010. Algorithm for multi-core graphics

processors. M.A. Thesis, Chalmers University of

Technology, Göteborg.

Iqbal, M. and S. Raghuwanshi, 2014. Analysis of

digital image processing with parallel with overlap

segment technique. Int. J. Comput. Sci. Netw.

Secur., 14(6): 52.

Jain, A., 2015. Java Notes-multithreading. Retrieved

from:http://www.niecdelhi.ac.in/uploads/Notes

/btech/5sem/cse/Java%20Notes%201%20-

%20Multithreading.pdf.

Java Tutorials and Projects, 2015. Retrieved from:

http://javatutorialandprojects.blogspot.in/2012/09/a

dvantages-and-disadvantages-of-

threads.html%20om.

Ji-Hoon, K., A. Syung-Og, K. Shin-Jin, K. Seok-Hun

and K. Soo-Kyun, 2014. Fast 3D graphics

rendering technique with CUDA parallel

processing. Int. J. Multimed. Ubiquit. Eng., 9(1):

199-208.

Kadah, Y.M., K.Z. Abd-Elmoniem and A.A. Farag,

2011. Parallel computation in medical imaging

applications. Int. J. Biomed. Imaging, 2011: 2, Doi:

org/10.1155/2011/840181.

Kamboj, P. and V. Rani, 2013. Brief study of various

noise model and filtering techniques. J. Global Res.

Comput. Sci., 4(4): 166-171.

Kaur, P., 2013. Implementation of image processing

algorithms on the parallel platform using matlab.

Int. J. Comput. Sci. Eng. Technol., 4(6): 696-706.

Kaur, P. and Nishi, 2010. A survey on CUDA. Int. J.

Comput. Sci. Inform. Technol., 5: 2210-2214.

Kika, A. and S. Greca, 2013. Multithreading image

processing in single-core and multi-core CPU

using Java. Int. J. Adv. Comput. Sci. Appl., 4(9):

165-169.

Kim, D., D.T. Joshua, S. Mikhail, R.H. Clifton, M.

Armando and D. Pradeep, 2010. High-Performance

3D compressive sensing MRI reconstruction.

Proceeding of the 32nd Annual International

Conference of the IEEE EMBS Buenos Aires,

Argentina.

Klimeck, G., F. Yafuso, M. McAuley, R. Deen, G.

Yagi, E.M. DeJong and A.C. Thomas, 2003. Near

Real-time Parallel Image Processing using Cluster

Computers.Space Mission Challenges for

Information Technology.

Lemeire, J., Y. Zhao, P. Schelkens, S. De Backer, F.

Cornelissen et al., 2009. Towards fully user

transparent task and data parallel image processing.

Proceeding of Workshop on Parallel and

Distributed Computing in Image Processing, Video

Processing and Multimedia.

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

237

Lin, C., L. Zhao and J. Yang, 2011. A high
performance image authentication algorithm on
GPU with CUDA. Int. J. Intell. Syst. Appl., 2: 52-
59.

Low, J., 2013. Medical image processing on intel
parallel frameworks. M.Sc. Thesis, High
Performance Computing.

Mahmoudi, A., S., P. Manneback, F. Lecron, M.
Benjelloun and S. Mahmoudi, 2009. Computing -
parallel image processing on GPU with Cuda and
OpenGL. Complex HPC meating Lisbon,
Retrieved from:
http://docs.oracle.com/cd/E13203_01/tuxedo/tux71
/html/pgthr5.htm.

Malakar, R. and N. Vydyanathan, 2013. A CUDA-
enabled hadoop cluster for fast distributed image
processing. Proceeding of the National Conference
on Parallel Computing Tecnologies, pp: 1-5.

Manjunathachari, K. and K. SatyaPrasad, 2005.
Modeling and simulation of parallel processing
architecture for image processing. J. Theor. Appl.
Inform. Technol., 3(1): 1-11.

Markonis, D., R. Schaer, I. Eggel, H. Müllerand A.
Depeursinge, 2012. Using mapreduce for large-
scale medical image analysis. Proceeding of the
IEEE 2nd International Conference on Healthcare
Informatics, Imaging and Systems Biology (HISB,
2012). San Diego, CA, pp: 1.

Marwa, C., B. Haythem, S. Fatma Ezahra and A.
Mohamed, 2014. Image processing application on
graphics processors. Int. J. Image Process., 8(3):
66-72.

Mathworks, Parallel Computing Toolbox, 2015.

Retrieved from:

http://www.mathworks.in/products/datasheets/pdf/

parallel-computing-toolbox.pdf

Navarro,C.A., N. Hitschfeld-Kahler and L. Mateu,

2014. A survey on parallel computing and its

applications in data-parallel problems using GPU

architectures. Commun. Comput. Phys., 15(2):

285-329.

Nickolls, J., 2007. GPU Parallel Computing

Architecture and CUDA Programming Model. Hot

chips 2007: NVIDIA GPU parallel computing

architecture, NVIDIA Corporation

Nicolescu, C. and P. Jonker, 2002. A data and task

parallel image processing environment. Parallel

Comput., 2: 945-965.

Nugteren, C., H. Corporaal and B. Mesman, 2011.

Skeleton-based automatic parallelization of image

processing algorithms for GPUs. Proceeding of the

International Conference on Embedded Computer

Systems (SAMOS). Samos, pp: 25-32.
NVIDIA, 2007. Retrieved from: http://www.nvidia.

com/object/what-is-gpu-computing.html.
Olmedo, E., J. Calleja, A. Benitez and M.A. Medina,

2012. Point to point processing of digital images
using parallel computing. Int. J. Comput. Sci.
Issues, 9(3): 1-10.

Osorio, R.R., C. Daz-Resco and J.D. Bruguera, 2009.

Highly Parallel Image Processing on a Massively

Parallel Processor Array. Retrieved from:

www.ac.usc.es/system/files/Jornadas09.pdf.

Open CV, 2014. Retrieved from:

http://www.aishack.in/2010/02/why-opencv/.

OpenCV and MATLAB, 2014. Retrieved from:

http://opencv-users.1802565.n2.nabble.com/

OpenCv-vs-Matlab-td2426918.html.

Pan, Z., 2013. High performance computing image

analysis for radiotherapy planning. M.Sc. Thesis

University of Edinburg.

Park, I.K., N. Singhal, M. Hee Lee, S.Choand
C.W.Kim, 2011. Design and performance
evaluation of image processing algorithms on
GPUs.IEEE T. Parall. Distr., 22(1): 91-104.

Pedrino, E.C. and M.M. Fernandes, 2014. Automatic
generation of custom parallel processors for
morphological image processing. Proceeding of the
IEEE 26th International Symposium on Computer
Architecture and High Performance Computing
(SBAC-PAD, 2014). Jussieu, pp: 176-181.

Rajaraman, V. and C. Siva Ram Murthy, 2006. Parallel

Computers-architecture and Programming.

Prentice-Hall of India, New Delhi.

Reményi, A., S. Szénási, I. Bándi, Z. Vámossy, G.
Valcz et al., 2011. Parallel biomedical image
processing with GPGPUs in cancer research.
Proceeding of the 3rd IEEE International
Symposium on Logistics and Industrial Informatics
(LINDI). Budapest, pp: 245-248.

Roy, F., 2013. Compiling an Image Processing GUI and
Accelerating it Using a GPU.

Ruetsch, G. and B. Oster, 2008. Getting Started with
CUDA. nVision 08: The World of Visual
Computing, NVIDIA Corporation.

Saxena, S., N. Sharma and S. Sharma, 2013a. Image

processing tasks using parallel computing in multi

core architecture and its applications in medical

imaging. Int. J. Adv. Res. Comput. Commun. Eng.,

2(4): 1896-1900.
Saxena, S., N. Sharma and S. Sharma, 2013b. An

intelligent system for segmenting an abdominal
image in multicore architecture. Proceeding of the
10th International Conference and Expo on
Emerging Technologies for a Smarter World
(CEWIT). Melville, NY, pp: 1-6.

Saxena, S., N. Sharma and S. Sharma, 2013c. Region

wise processing of an image using multithreading

in multicore environment & Its application in

medical imaging. Int. J. Comput. Eng. Technol.,

4(4): 20-30.
Saxena, S., S. Sharma and N. Sharma, 2014a. Parallel

computation of mutual information and its
applications in medical image registration.
Proceeding of the IEEE Xplore Database,
International Conference MEDCOM held at Noida,
India.

Res. J. App. Sci. Eng. Technol., 12(2): 223-238, 2016

238

Saxena, S., S. Sharma and N. Sharma, 2014b. Image

registration using parallel computing in multicore

environment and its applications in medical

imaging: An overview. Proceeding of the

International Conference on Computer and

Communication Technology (ICCCT, 2014).

Allahabad, pp: 97-104.

Schweiger, M., 2011. GPU-accelerated finite element

method for modelling light transport in diffuse

optical tomography. Int. J. Biomed. Imaging, 2011:

11, Doi: org/10.1155/2011/403892.

Slabaugh, G., R. Boyes and X. Yang, 2010. Multicore

image processing with openMP. IEEE Signal Proc.

Mag., 27(2): 1-9.

Smith, M., 2014. Introduction to OpenCV. MATLAB

and OpenCV. Retrieved from:

http://blog.fixational.Com/post/19177752599/open

cv-vs-MATLAB.

Soviany, C., 2003. Embedding data and task parallelism

in image processing applications. Ph.D. Thesis,

Technische Universiteit Delft.

Squyres, J.M., A. Lumsdaine and R.L. Stevenson,

1995a. A cluster-based parallel image processing

toolkit. Proceeding of the IS&T Conference on

Image and Video Processing.San Jose, CA, pp: 5-

10.

Squyres, J.M., A. Lumsdaine and R.L. Stevenson,

1995b. A cluster-based parallel image processing

toolkit. Proceeding of the Society of Photo-Optical

Instrumentation Engineers, pp: 228-239.

Squyres, J.M., B.C. McCandless, A. Lumsdaine and

R.L. Stevenson, 1996. Parallel and Distributed

Algorithms for High-Speed Image Processing.

Proceeding of 6th Annual Dual-Use Technologies

and Applications Conference.

Squyresy, J.M., A. Lumsdainey and R.L. Stevenson,

1998. A toolkit for parallel image processing.

Proceeding of the SPIE Conference on Parallel and

Distributed Methods for Image Processing, pp: 69-

80.

Srinivasan, B.V., 2009. Graphical Processor and Cuda.

Slides Adapted from CMSC828E Spring Lectures.

Tariq, S., 2011. An Introduction to GPU Computing

and CUDA Architecture. NVIDIA Corporation.

Retrieved from: http://on-

demand,gputechconf.com/gtc-

express/2011/presentations/GTCExprcssSarahTari

q_June2011.pdf. (Accessed on: October, 2014)

Thiyagalingam, J., D. Goodman, J.A. Schnabel, A.

Trefethen and V. Grau, 2011. On the usage of

GPUs for efficient motion estimation in medical

image sequences. Int. J. Biomed. Imaging, DOI:

org/10.1155/2011/137604.

Tward,D.J., C. Ceritoglu, A. Kolasny, G. Sturgeon,

W.P. Segars, M.I. Miller and J.T. Ratnanather,

2011. Patient specific dosimetry phantoms using

multichannel LDDMM of the whole body. Int. J.

Biomed. Imaging, DOI: org/10.1155/2011/481064.

Wendykier, P., 2003. High performance java software

for image processing. Ph.D. Thesis, Adam

Mickiewicz University.

Wiley, K., A. Connolly, S. Krugho, G. Je, M.

Balazinska et al., 2010. ASP Conference Series.

Xu, M. and P. Thulasiraman, 2011. Mapping iterative

medical imaging algorithm on cell accelerator. Int.

J. Biomed. Imaging, 2011: 11, Doi:

org/10.1155/2011/843924.

Yamamoto, M. and K. Kaneko, 2012. Parallel image

database processing with mapreduce and

performance evaluation in pseudo distributed

mode. Int. J. Electron. Comm. Stud., 3(2): 211-228.

Yang, Z., Y. Zhu and Y. Pu, 2008. Parallel image

processing based on CUDA. Proceeding of the

International Conference on Computer Science and

Software Engineering.

Zhang, N., Y.S. Chen and W. Jian-Li, 2010. Image

parallel processing based on GPU. Proceeding of

the 2nd International Conference on Advanced

Computer Control (ICACC). Shenyang, pp: 367-

370.

Zhou, L., H. Wang and W. Wang, 2012. Parallel

implementation of classification algorithms based

on cloud computing environment. Indonesian J.

Electr. Eng., 10(5): 1087-1092.

