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Abstract: Material requirement planning in production systems usually require product explosion in order to 

determine the raw materials required to produce a given quantity of product in a given horizon. Product explosion 

can easily be done in cases when the product is a discrete item but becomes impossible in flow production 

processes. In this situation an appropriate method of relating input to output of processes, such as transfer function, 

would be used as an alternative to product explosion in material requirement planning. In this study, transfer 

function is used to model the relationship between the input and output of a brewery. It involved taking the inputs 

and outputs to the brewery for three different periods and determining the transfer functions. The determined 

transfer functions were compared with an equivalent model obtained using regression analysis. The results show that 

transfer function models performed better than regression analysis. In addition the raw materials quality variability 

and product variability, a key characteristics of the process industry, was effectively modeled. Transfer function is 

therefore recommended as the preferred tool for material requirement planning for breweries. 
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INTRODUCTION 

 
Quite regularly in production systems, it is often 

necessary to predict/forecast the output of a process 
from a given input or determine the inputs required to 
produce a given quantity of output. This is very 
desirable in production planning and control systems. In 
material requirement planning, when the quantity of a 
given product to be produced in a given period, i.e., 
weekly, biweekly, monthly etc as the case may be, is 
determined from sales forecast and demand, it is often 
necessary to determine the quantity of raw materials 
that would meet the aggregate production plan. In the 
manufacture of discrete items, this is often done by 
product explosion. In the process industry, product 
explosion is not possible because of the nature of the 
production process. Therefore, an approximate way to 
relate the quantity of raw materials required to produce 
a given product is to model the relationship between the 
input to a process and the output of the process. 

As noted in the literature, determining the 
relationship between the input and output of a 
production process is quite complex because the input 
to a production process is stochastic and the output is 
equally stochastic (Nwobi-Okoye and Igboanugo, 2012, 
2015;  Nwobi-Okoye et al., 2015; Igboanugo and 

Nwobi-Okoye, 2012; Igboanugo and Nwobi-Okoye, 
2011). The complexity becomes even more in the case 
of multi-input single-output production processes as 
shown in Fig. 1 in the case of a brewery. 

Mathematically modelling the relationship between 
input and output of processes is usually done through 
transfer function modeling, regression analysis and its 
derivatives which include linear system model, Koyck-
lags model, Almon-lags model etc (Lai, 1979; Nwobi-
Okoye and Igboanugo, 2012; Box et al., 2008). Of all 
these mathematical modeling tools named, many 
authors have praised the elegance, accuracy and 
superiority of transfer functions in modeling the causal 
relationship between input and output of a process over 
regression analysis and its derivatives (Nwobi-Okoye 
and Igboanugo, 2012, 2015; Lai, 1979; Box et al., 
2008; Kinney, 1978). Hence, our choice to investigate 
transfer function modeling as a tool for Material 
Requirement Planning (MRP) in breweries is based on 
sound scientific evidence backed by literature. 

MRP as an operations management tool has 
evolved over the years. The earliest writing on the basic 
MRP calculations was due to Sloan (1963) who wrote 
about its use as far back as 1921 in his account of his 
years at General Motors. In the literature, it is noted that 
application   of    MRP   in   process   industries  is quite  
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Fig. 1: Schematic of the input-output relationship of a brewery 

 

difficult and less straightforward when compared to 

industries that manufacture discrete items (Crama et al., 

2001; Schuster et al., 2000; Fransoo and Rutten, 1994; 

Akkerman and van Donk, 2006; Kallrath, 2002a, 

2002b). One of the complexities of application of MRP 

to process industries is that unlike in the manufacture of 

discrete items, the raw materials vary for the same 

quantity of product and the quality of raw materials or 

end  products  could  also  vary  considerably  (Crama 

et al., 2001). This apparent complexity makes transfer 

function an appropriate tool for modeling the complex 

relationship between the input and output of a process. 

By doing this we would have a more accurate recipe, an 

important component of the MRP in the process 

industry. 

The aim of this research is to explore transfer 

function modeling as possible tool for MRP in the 

process industry with brewery as a case study; and also 

to compare the tool with regression analysis, a 

competing tool. The hub of our investigation is a local 

brewery known as Consolidated Breweries PLC located 

at Awo Omamma, Imo State Nigeria. The company 

produces malt drinks and beer. 

 

THEORETICAL BRIEF 

 

Multiple input transfer function models: In terms of 

the impulse response weights ����, the transfer 

function can be represented as (Box et al., 2008): 

 

�� = ������	
 + ��                 (1) 

 

Recalling that ���� = 	�������� (Box et al., 

2008), we obtain: 

 

�� = 	����������	
 + ��                 (2) 

 

Allowing for several inputs, ��,�, ��,�,…, ��,� we have: 

 

�� = �������,� + ⋯ + �������,� + ��               (3) 

�� =  	�����������,�	
 + ⋯ + 

	�����������,�	
 + ��                                   (4) 

 

Here ����� is the generating function of the 

impulse response weights relating to ��,� to the output. 

Assuming differencing is applied to the input and 

output series we obtain: 

 

�� = �������,� + ⋯ + �������,� + ��                (5) 

 

Multiplying throughout by ��,�	�, ��,�	�, 

…, ��,�	� in turn and taking expectations and forming 

the generating functions, we obtain: 

 

������� = ������������� + ������������� + ⋯ 

+�������������  
������� = ������������� + ������������� +
⋯ + �������������                               

������� = ������������� + ������������� 

+ ⋯ + �������������                                      (6) 

 

Substituting � =  	!�"# , the spectral equations are 

obtained. For the case of m = 2, the spectral equations 

are: 

 

$����%� = &��%�$����
�%� + &��%�$����

�%�     (7) 

 

$����%� = &��%�$����
�%� + &��%�$����

�%�     (8) 

 

The frequency response functions &��%� =
��� 	!�"#�, &��%� = ��� 	!�"#�  can be calculated 

through methods outlined in the literature on spectral 

analysis such as Koopmans (2003) and Jenkins and 

Watts (1968) etc. The impulse response weights can be 

obtained by the inverse transformation thus: 

 

�� = ' �� 	!�"#� !�"#(% 
�
�

	
�
�

                (9) 
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METHODOLOGY 

 

The six year data obtained from the brewery was 

subjected to exploratory data analysis to detect outliers 

and patterns in the data. After the exploratory data 

analysis, the transfer function model according to Eq. 

(4) was obtained using the input-output data for the 

periods 2006-2007, 2008-2009 and 2010-2011. 

In order to realize the transfer function model 

based on Eq. (4), a plot of the 6-year input-output data 

was done using SPSS software. Following the plot, the 

data were investigated for stationarity, using the plots 

of the Autocorrelation Functions (ACF) and Partial 

Autocorrelation Functions (PACF). The inputs and 

output series derived from the plots were investigated 

for stationarity. Non stationary series were differenced 

to achieve stationarity. A univariate model was 

individually fitted to the input X1t and output Yt and 

input X2t and output Yt for each of the years in order to 

respectively estimate prewhitened input series α1t and 

α2t and pretreated output series β1t and β2t respectively. 

Calculation of the cross correlation functions, CCF (k) 

of β1tα1t-k and β2tα2t-k was used to identify r, s and b 

parameters of the transfer function model. Sequel to 

obtaining the nature of the transfer function models, the 

impulse response weights ��, estimated with spectral 

analysis, were used to estimate the transfer function 

parameters in Eq. (4).  

 

RESULTS 
 
Transfer function modelling: Figure 2 shows the 
monthly raw materials consumption and the 
corresponding output (drink production) in the years 
2010-2011 for Consolidated Brewery Nigeria Limited. 
The raw material X1 are cereals while the raw material 
X2 is the additive. All raw material values are in kg, 
while the output values are in Hecto Litre (HL). 
 
Analysis of input 1 (X1) and output (Y): After 
plotting the input series X1 as shown in Fig. 2, the data 
was  investigated  for  stationarity, using the plots of the  

Autocorrelation Functions (ACF) and Partial 
Autocorrelation Functions (PACF). The input and 
output series derived from the plots were found not to 
be stationary, hence differencing was used to achieve 
stationarity. Stochastic regularity was achieved after the 
second differencing. 

Examination of the ACF shown in Fig. 3, the ACF 

at lag 1 is significant. But examination of the PACF 

shown in Fig. 4, only the ACF at lag 1 repeated its 

significant and this is indicative that MA (1) model is 

the appropriate model to use. 

The formula for MA (1) models (Box et al., 2008; 

DeLurgio, 1998) is given by Eq. (10): 

 

X�* = µ + θ�e�*	� + e�*              (10) 

 

x�* = X�* − X�*	�               (11) 

 

x�* = θ�e�*	� + e�*               (12) 

 

But for MA (1) models, we have: 

 

ACF�1� = ρ� = −0.461              (13) 

 

But: 

 

ρ� =
	θ�

�6θ�
�               (14) 

 

Therefore: 

 

−0.461 =
	θ�

�6θ�
�               (15) 

 

0.461θ�
� − θ� + 0.461 = 0              (16) 

 

θ� = − 0.6128  
 

Hence, fitting the coefficient θ� into the formula 

for MA (1) models, Eq. (17) is obtained: 

 

x�* = − 0.6128e�*	� + e�*              (17) 
 

 
 

Fig. 2: Monthly raw material consumption and output
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Fig. 3: ACF of the input series 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4: PACF of the input series 

 
Substituting Eq. (17) into Eq. (11) we obtain: 
 

X�* − X�*	� = − 0.6128e�*	� + e�*             (18) 
 

X�* = X�*	� −  0.6128e�*	� + e�*                     (19) 
 

But: 
 

e* = α*                (20) 
 
In forecasting form Eq. (19) is transformed to Eq. (21): 
 

X9�* = X�*	� −  0.6128e�*	� + e�*             (21) 
 
Pre-treating the output in the same way the input 

was transformed, we obtain: 
 
Y* = Y*	� −  0.6128e*	� + e*              (22) 
 

But: 
 
e* = β*                (23) 

 
In forecasting form Eq. (22) is transformed to Eq. (24): 

 

Y9* = Y*	� −  0.6128e*	� + e*                                (24) 
 

The CCF between βt and αt is shown in Fig. 5. It 

has   one   significant   CCF   at   lag   zero  (0).  Hence,  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 5: CCF of the pre-whitened series 

 

according to Box et al. (2008), the parameters r, s and b 
of the transfer function that supports such CCF pattern 
are 0, 0 and 0 respectively. In view of this fact, the CCF 
supports the following transfer function model: 
 

y* = ω2<x�* + N*               (25) 
 

Based on Ljung-Box statistics and analysis of the 
residuals, the transfer function was found to have white 
noise residuals, hence we disregarded the noise term Nt, 
to obtain Eq. (26): 
 

y* = ω2<x�*                (26) 
 
As shown by Box et al. (2008) and DeLurgio (1998): 

 
v2< = ω1<                (27) 

 

v2< = impulse response for X�  
 
But: 

 
X�* − µ = x�*               (28) 
 

And: 
 

Y* − µI = y*                (29) 

 
Substituting Eq. (29) into Eq. (26), Eq. (30) is obtained: 

 

Y* = µI + ω2<x�*               (30) 

 

ANALYSIS OF INPUT 2 (X2) AND OUTPUT (Y) 

 
The (X2) series upon analysis was found to be 

stationarity, hence differencing was not used. 
Examination of the ACF and PACF in Fig. 6 and 7 are 
indicative that auto regression one (AR (1)) model is 
the appropriate model to use. 

The formula for AR (1) models (Box et al., 2008; 
DeLurgio, 1998) is given by Eq. (31): 
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Fig. 6: ACF of the input series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7: PACF of the input series 

 

��� = J< + ∅����	� +  �               (31) 

  

But for AR (1) models, we have: 

 

LMN�1� = ∅� = 0.800              (32) 

 

O = 129968.9583 

J< = �1 − ∅��O                  

J< = �1 − 0.800�129968.9583  
J< = 25993.792                                                (33) 

 

Fitting the coefficients J< and ∅� into the formula 

for AR (1) models, Eq. (34) is obtained: 

 

��� = 25993.792 + 0.800���	� +  �             (34)  

 

But: 

 

 � = T�                 (35) 

 

In forecasting form Eq. (34) is transformed to Eq. (36): 

 

�U�� = 25993.792 + 0.800���	�             (36) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 8: CCF of the pre-whitened series 

 

Pre-treating the output in the same way the input 
was transformed, we obtain: 

 
∅� = 0.800  
J< = �1 − ∅��O  
O = 64785.93794 
J< = �1 − 0.800�64785.93794 
J< = 12957.1876  
�� = 12957.1876 + 0.800��	� +  �                  (37) 
 

But: 
 
 � = V�                  (38) 
 

In forecasting form Eq. (37) is transformed to Eq. (39): 
 

�U� = 12957.1876 + 0.800��	�             (39) 
 

The CCF between βt and αt is shown in Fig. 8. It 
has one significant CCF at lag zero (0). Hence, 
according to Box et al. (2008), the parameters r, s and b 
of the transfer function that supports such CCF pattern 
are 0, 0 and 0 respectively. In view of this fact, the CCF 
supports the following transfer function model: 
 

�� = �2<��� + ��                (40) 
 

Based on Ljung-Box statistics and analysis of the 
residuals, the transfer function was found to have white 
noise residuals, hence we disregarded the noise term Nt, 
to obtain Eq. (41): 
 

�� = �2<���                (41) 

 

As shown by Box et al. (2008) and DeLurgio (1998): 

 

�2< = �1<                (42) 

 

�2< = WX$YZ[  \ [$]�[  %]\ ��  
 

But: 

 

��� − O = ���               (43) 
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Table 1: Transfer function models of the brewery 

Year Transfer Function Model  (v(B)) 

2010-2011 �� = 64785.938 + 0.0489805291298761���� − O�� +0.0547027826309204 ���� − O�� 
2008-2009 �� = 60639.747 + 0.0451340973377228���� − O�� + 0.0746965254718585���� − O�� 
2006-2007 �� = 45447.329 + 0.048234991436449���� − O�� + 0.0601006329059601 ���� − O��

 
 
Table 2: Comparison of statistics of regression and transfer function models 

Years R2 (Regression) R2 (Transfer Function) MAPE (Regression) MAPE (Transfer Function) 

2010-2011 0.999 0.999 0.424816124 0.418508984 

2008-2009 0.971 0.977 1.558114135 1.534790006 
2006-2007 0.998 0.999 0.763015663 0.757127741 

 
Table 3: Raw materials requirements for 50,000 HL of product for different periods 

Year Product Requirement (HL) Cereal Requirement (Kg) Additive (Kg) 

2010-2011 50, 000 752773 82199 
2008-2009 50, 000 869557 154001 

2006-2007 50, 000
 

895598
 

91700
 

 
And: 

 
�� − O� = ��                (44) 

 
Substituting Eq. (41) into Eq. (44), Eq. (45) is obtained: 

 

�� = O� + �2<���                (45) 

 
The analysis above revealed that transfer function 

is of the form: 
 
�� = �1<���  + �2<���               (46) 
 

Since: 
 

�� = �� − O�, ��� = ��� − O� and ��� = ��� − O� 

�� = O� + �1<���� − O��  + �2<���� − O��    (47) 

 
Since: 

 
�1< = �1< and �2< = �2< 
 

where, �1< = WX$YZ[  \ [$]�[  %]\ ��  and �2< =
WX$YZ[  \ [$]�[  %]\ �� : 

 

�� = O� + �1<���� − O��  + �2<���� − O��     (48) 

 
�1< and �2< were obtained by spectral analysis. 

After spectral analysis and parameter optimization 
using genetic algorithm the values of �1< and �2< 
obtained were: 

 

�1< =  0.0489805291298761  
and �2<= 0.0547027826309204 
 
Therefore for 2010-2011 operation of the brewery, 

the transfer function is given by: 
 

�� = O� + 0.0489805291298761���� −
O1� +0.0547027826309204��2^−O2�             (49) 

 
Table 1 shows the transfer function models 

obtained for the three years operation of the brewery. 

But from Table 2, a comparison of the two models 

from statistical point of view indicates that the transfer 

function model performed better than the regression 

model. This is because the coefficient of determination 

R
2
 is higher and Mean Absolute Percentage Error 

(MAPE) lower in the transfer function models. This 

confirms our earlier assertion that transfer function 

models are better statistically than regression models. 

This also confirms the findings of Kinney (1978), as 

well as Nwobi-Okoye and Igboanugo (2015) that 

ARIMA based univariate transfer function models 

which requires the largest information set and the 

greatest computation effort yields the smallest mean 

absolute error and as well as the smallest prediction 

bias in comparison to regression based models.  

 

DISCUSSION 

 

Assuming 50,000 HL of product required in a 

particular month in the period 2006-2007, by back 

casting, using a computer program written with C++, 

we discover that to produce that quantity we require 

895598 kg of cereal and 91700 kg of additives through 

transfer function modeling. Also, assuming the same 

50,000 HL of product is required in a particular month 

in the period 2008-2009, by back casting we discover 

that to produce that quantity we require 869557 kg of 

cereal and 154001 kg of additives. Similarly, if 50,000 

HL of product is required in a particular month in the 

period 2010-2011, by back casting we discover that to 

produce that quantity we require 752773 kg of cereal 

and 82199 kg of additives.  

The raw material requirements for producing 
50,000 (HL) of product for various periods are shown 
in Table 3. Figure 9 shows the flow chart for the C++ 
program used in calculating the raw materials 
requirement for any required quantity of product. Once 
this is known, the managers could plan for raw material 
procurement. Of course from the results, material 
requirement planning based on transfer function 
modeling is more accurate and statistically better than 
that based on regression analysis.  
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Fig. 9: Flowchart for computation of quantities of primary and secondary raw materials 

 
Table 3 confirms the fact that in the process 

industry, raw materials vary for the same quantity of 
product and the quality of raw materials or end products 
could also vary considerably (Crama et al., 2001). 

 

CONCLUSION 

 
Proper planning is critical to the successful 

operation of any production system. Effective planning 
for  raw  materia l procurement is very important for the 
success of MRP and production planning and control 
system in general. With transfer function modeling 
system engineers could effectively obtain the 
approximate quantities of raw materials required in 
meeting the master production schedule for a given 
production horizon in process industries. 

 

Nomenclature, symbols and notations: 

 

k  = Lag variable 

βt = Pretreated output series 

αt = Prewhitened input series 

v(B)  = Transfer function 

B  = Backshift operator 

Yt  = Process output at time t 

Xt  = Process input at time t 

yt  = Differenced output series 

xt  = Differenced input series 

�U t  = Output forecast 

�Ut  = Input forecast 

at  = Error term/white noise 

υk  = Impulse response weight at lag k 

h = ACF/PACF lag 

q  = Order of moving average operator 

p  = Order of autoregressive operator 

d = Number of differencing 

θ  = Autoregressive operator 

φ  = Autoregressive operator 

Ξ  = Coefficient of output variable of differential 

equation 

H  = Coefficient of input variable of differential 

equation 

χ  = Covariance function 

b  = Transfer function lag 

ω  = Difference equation variable for input 

δ  = Difference equation variable for output 

r  = Order of the output series 

s  = Order of the input series 

S  = Sample standard deviation 
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σ  = Population standard deviation 
ρ  = Auto correlation function 
γ  = Cross correlation function 
µ  = Mean 
ACF  = Auto Correlation Function 
PACF = Partial Auto Correlation Function 
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