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Abstract: Hyper Spectral Imaging (HSI) gathers and processes information from across the electromagnetic 
spectrum. The information enclosed in hyperspectral data permits the characterization, recognition and classification 
of the land-covers with enhanced accuracy and robustness. On the other hand, quite a lot of vital complications must 
be considered during the classification process of hyperspectral data, among which the maximum quantity of 
spectral channels, the spatial unevenness of the spectral signature, shape discovery of the images and the value of 
data. Above all, the maximum quantity of spectral channels and low number of labeled training samples pose the 
setback of the curse of dimensionality and, accordingly, result in the possibility of overfitting the training data. With 
the aim of solving all these complications, in this study presented the framework of Support Vector Machine (SVM) 
together with Fuzzy Sigmoid Kernel Function (SVM-FSK) in the circumstance of HSI classification and analyzing 
their features in the hyperspectral domain. A Kernel Fisher Discriminant Analysis (KFDA) model is employed for 
the purpose of dimensionality reduction of HSI. The KFDA dimensionality reduction scheme depends on the 
selection of the kernel in a higher-dimensional HSI feature space. In order to enhance the gradient level of spatial 
information, employed Improved Empirical Mode Decomposition (IEMD) with Gaussian Firefly Algorithm (GFA) 
(IEMD-GFA) to boost the mixed pixel wise SVM-FSK classification accuracy. During the process of IEMD 
scheme, the identifiable of Intrinsic Mode Functions (IMFs) of spectral band, weight values of IMFs are computed 
with the help of GFA. In order to identify the shape of HSI, novel hybrid scheme depending on the canny operator 
and fuzzy entropy theory is formulated. This scheme computes the fuzzy entropy of gradients from an image to 
make a decision on the threshold for the canny operator. For the purpose of detecting the edges and to discover the 
shape of the object Weibull Probability Density Function (WPDF) scheme is used. The obtained both spectral and 
spatial pixels are classified using SVM-FSK and estimated by using Hierarchical Dirichlet Process (HDP)-Hidden 
Markov Model (HMM). The proposed SVM-FSK is assessed with hyperspectral AVIRIS Indian Pine dataset. It 
shows that the proposed dimensionality reduction with SVM-FSK classification shows improved classification 
accuracy in terms of parameters like overall accuracy, standard deviation and mean. 
 
Keywords: Canny Edge Detection, Gaussian Firefly Algorithm (GFA), Hierarchical Dirichlet Process (HDP), 

Hyperspectral image classification, Hidden Markov Model (HMM), Hidden Markov Model (HMM), 
Hyper Spectral Images (HSI), Pixel wise characterization, Support Vector Machine (SVM), Spectral 
Gradient enhancement, shape detection, Weibull Probability Distribution Function (WPDF) 

 

INTRODUCTION 

 
Hyper Spectral Images (HSI) are made up of 

hundreds of bands with an extremely high spectral 
resolution, from the perceptible to the infrared region. 
The extensive spectral range, combined with constantly 
increasing spatial resolution, permits to better 
differentiate materials and provides the capability to 
locate ground between spectrally close ground classes, 
making hyperspectral imagery appropriate for land 
cover classification. Owing to their characteristics, 
hyperspectral data have, at present, gained an 

incessantly growing interest among the remote sensing 
group of people (Yang and Li, 2012; Landgrebe, 2003). 
The one most important concern in the extremely high 
spectral resolution of remotely sensed hyperspectral 
data (Du, 2013), is the high dimensionality and it 
introduces a new challenge in the spectral-spatial 
feature extraction classification of the HSI. In order to 
overcome this complication, the proposed system 
makes use of a high dimensionality spectral image for 
the purpose of classification in HSI processing. 

The enormous amount of information and the high 

spectral resolution of HSI offer the chance to resolve 
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complications which typically cannot be solved through 

multispectral images. On the other hand, quite a lot of 

significant issues required to be considered during the 

classification process for this category of images. 

During the classification of HSI, the higher 

dimensionality of the data boosts the potential to 

identify and differentiate several classes with better 

accuracy. HSI classification is the process which is 

employed to generate thematic maps from remote 

sensing image. Classification in remote sensing 

includes the process of clustering the pixels of an image 

to a set of classes in order that pixels in that particular 

class are having comparable features. Kernel-based 

classification scheme like Support Vector Machines 

(SVMs) has been famous and utilized broadly in the 

process of HSI classification in recent years (Anthony 

et al., 2007). The most important motivation of the 

attractiveness of kernel-based schemes and SVM 

specifically, are relatively higher classification 

accuracies and lower sensitivity to the high dimensions 

of data (Bazi and Melgani, 2006). One more useful 

feature of SVMs is their better generalization 

capability, resulting in sparse solutions (Bazi and 

Melgani, 2006). In case of kernel-based schemes, 

kernel functions are fundamentally utilized to 

discriminate among classes that are not linearly 

separable, by means of mapping the data to a higher 

dimensional space. 

The large dimensionality of the data in the spectral 

domain guides to theoretical and practical 

complications for classification of HSI. This 

complication is solved with the help of a signal-analysis 

scheme like Empirical Mode Decomposition (EMD), 

which will produce a collection of Intrinsic Mode 

Functions (IMF) (Kim and Oh, 2009). The 

decomposition process of EMD is completely based on 

the magnitude of the original signal with a range of 

intrinsic time scales, explicitly; it decomposes the 

signal into dissimilar frequency elements. The EMD 

has been extensively employed in recent decades for the 

purpose of time-domain signal processing and was also 

employed to decompose the time-sequence signal in 

order to find out the intrinsic information (Chen and 

Jegen-Kulcsar, 2006). For effective functioning of 

EMD, the variations in both frequencies and amplitude 

have to be adequate for decomposition analysis. In case 

if the physical criteria for the variations between two 

signals are not satisfied, the sifting process obtains an 

IMF with single tone modulated in amplitude in place 

of a superposition of two unimodular tones. As a result, 

the modulated signal would no longer follow the 

features of the original signals. Hence, it is essential to 

overcome this complication of mode mixing and for 

this purpose proposed an improved Empirical Mode 

Decomposition. 

EMD has been initially formulated for 1-D and 2-D 

signals in Amira-Biad et al. (2015) and Shi et al. 

(2009), which makes use of geodesic operator-based 

morphological processes to identify the extremum 

points and Radial Basis Function (RBF) interpolation 

for the purpose of extracting the envelopes. A Kernel 

Fisher Discriminant Analysis (KFDA) scheme utilized 

a Weibull Probability Density Function (WPDF) for the 

purpose of extraction and estimates the edge 

characteristics of the HSI. 3-D EMD was formulated in 

Zemzami et al. (2013). In this study, the 3-D improved 

EMD method is presented. 

However, the above mentioned classification 

scheme doesn’t work under mixed wise categorization 

for HSI images and shape based edge detection is also 

not done at some stage in dimensionality reduction 

process in HSI images. On the other hand, none of the 

existing schemes pays attention to shape detection 

results and spectral information embedding in terms of 

mixed pixel representation and efficient 

characterization of spatial data representation, which is 

one of the foremost challenges in the HSI classification. 

In view of the fact that edge information from an image 

can be utilized to determine or identify objects in 

images. Edges signify considerable transformations in 

the image, preferably at the boundary among two 

different regions. Also, false edges are commonly 

detected and (parts of) vital edges are omitted. As a 

result, subsequent to edge detection there remains the 

setback of obtaining significant information regarding 

object boundaries with edges. Hence, it is believed that 

the classification of edges in, for instance, geometry 

edge, shadow edge, material edge or highlight edge, is 

helpful. Intensity-based edge detectors cannot 

differentiate the physical cause of an edge. A number of 

effective schemes for edge detection in normal (one-

band) images are available (Verzakov et al., 2006). 

There are numerous methods to integrate the edge 

gradients computed from the several color bands.  

In this study, hyper-spectra are therefore used to 

classify the edges. In addition, it is essential to find the 

way to employ the spatial information of the pixels to 

enhance performance of HSI classification still requires 

more investigation. In this study, the present work to 

hybrid Canny Edge Detection (HCED) schema is 

extended to detect the edges and shapes of the HSI 

images and classification scheme to operate on shape 

derived from hyper-spectra. Given the hyper-spectral 

gradients, subsequently the 3-D improved EMD 

(IEMD) is executed to each spectral band to get hold of 

a finite number of IMFs. Then Improved Empirical 

Mode Decomposition (IEMD) scheme is employed to 

enhance gradient level of spatial data in order to 

separate identifiable of Intrinsic Mode Functions 

(IMFs) of each band of the spectral data and optimum 

weights of the band obtained IMFs for reconstruction. 

Gaussian Firefly Algorithm (GFA) scheme is utilized to 

map all the optimum weights of the band obtained 

IMFs. The IMFs are summed by means of these 
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weights to reconstruct the features that are employed in 

mixed pixel wise classification framework is carried out 

in accordance with the semi hidden markov model in 

Support Vector Machine (SVM)-Fuzzy Sigmoid Kernel 

(FSK). It is shown in results that the proposed scheme 

provides a significant increase in accuracy for HSI 

classification. The main objective of this study is to 

completely use of spectral and spatial data for 

classification task to get exact land cover and land use 

class results. Classification of fewer number of HSI 

data samples has been more concentrated in a wide 

range of investigation recently. 

 

LITERATURE REVIEW 

 

Chen et al. (2011) formulated a new sparsity-based 

approach for the classification of hyperspectral 

imagery. Two different schemes were formulated to 

incorporate the contextual information into the sparse 

recovery optimization problem with the aim of 

improving the classification accuracy. In the first 

scheme, an explicit smoothing constraint is enforced on 

the problem formulation by means of forcing the vector 

Laplacian of the reconstructed image to become zero. 

In this scheme, the reconstructed pixel of significance 

has comparable spectral features to its four nearest 

neighbours. The second scheme is using a joint sparsity 

model in which hyperspectral pixels in a small 

neighbourhood in the region of the test pixel are 

concurrently represented by linear combinations of a 

small amount of common training samples, which are 

weighted with a diverse set of coefficients for each 

pixel.  

Chen et al. (2013) formulated a novel nonlinear 

scheme for HSI classification. For every test pixel in 

the feature space, a sparse representation vector is 

acquired by means of decomposing the test pixel over a 

training dictionary, in addition in the same feature 

space, with the help of a kernel-based greedy pursuit 

approach. The recovered sparse representation vector is 

then employed directly to find out the class label of the 

test pixel. By means of projecting the samples into a 

high-dimensional feature space and kernelizing the 

sparse representation considerably develops the data 

separability among different classes, offering better 

classification accuracy.  

Jabari and Zhang (2013) formulated a 

segmentation and fuzzy rule-based classification for 

extremely high resolution satellite images. The process 

of classifying extremely high resolution images is 

incredibly challenging because there are uncertainties in 

the location of the object borders. As a result, a fuzzy-

rule based classification shows evidence of more 

promising solution to this challenging task. At first, the 

input image is segmented into shadows, vegetation and 

roads by means of eCognition software. Subsequently, 

triangular and trapezoidal fuzzy functions are employed 

to allocate membership values to those segmented 

regions.  

Ji et al. (2014) formulated a HSI classification 

scheme to consider both the pixel spectral and spatial 

parameters, in which the association among pixels is 

planned in a hypergraph structure. In the hypergraph, 

every vertex indicates a pixel in the HSI. And the 

hyperedges are composed from both the distance 

among pixels in the feature space and the spatial 

positions of pixels. To be exact, a feature-based 

hyperedge is produced with the use of distance among 

pixels, where each pixel is linked with its K nearest 

neighbors in the feature space. Subsequently, a spatial-

based hyperedge is produced to model the outline 

among pixels by connecting where each pixel is 

connected with its spatial local neighbors. Both the 

learning on the combinational hypergraph is done 

through mutually examining the image feature and the 

spatial layout of pixels to look for their joint optimal 

partitions.  

HSI classification approach by using pixel spatial 

relationship was formulated by Gao and Chua (2013). 

In case of HSIs, the spatial association among pixels 

has been revealed to be significant in the examination 

of pixel labels. In order to better employ the spatial 

information, it is essential to estimate the correlation 

surrounded by pixels in a hypergraph structure. In the 

constructed hypergraph, each pixel is indicated by a 

vertex and the hyperedge is built with the help of the 

spatial neighbors of each pixel. Semi-supervised 

learning on the constructed hypergraph is done for HSI 

classification. 

Li et al. (2013) formulated a new structure for the 

improvement of generalized composite kernel machines 

for HSI classification. Build a new family of 

generalized composite kernels which show signs of 

enormous flexibility when integrating the spectral and 

the spatial information enclosed in the hyperspectral 

data, without any weight constraints. The classifier 

implemented in this scheme is the multinomial logistic 

regression and the spatial data is modeled from 

extended multiattribute profiles. With the intention of 

providing the better performance, SVM are also 

employed for evaluation purposes.  

Demir and Erturk (2008) attempted to increase the 

classification accuracy of HSIs with the process of 

fusing spectral magnitude features and spectral 

derivative features. Principal Component Analysis 

(PCA) is employed as feature extraction scheme to 

decrease the final number of features of the 

hyperspectral data prior to feature fusion. PCA is 

executed independently to magnitude and derivative 

features to find out important constituents of each. 

Different fusion schemes of the important constituents 

of magnitude features and the important constituents of 

the first in addition to second spectral derivatives are 
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assessed to build the desired number of final features. 

SVM classification is employed for the purpose of 

classification of HSI following feature fusion. 
Kalluri et al. (2010) formulated an effective 

scheme for the decision-level fusion of the spectral 
reflectance information with the spectral derivative 
information for robust land cover classification. This 
scheme is different from since an effective 
classification strategies is implemented to get rid of the 
increased over-dimensionality complication introduced 
by the addition of the spectral derivatives for 
hyperspectral classification.  

Weng and Barner (2008) formulated a modified 
scheme for signal reconstruction depending on the 
EMD that improves the capability of the EMD to 
satisfy a specified optimality criterion. This 
reconstruction approach provides the best estimate of a 
particular signal in the minimum mean square error 
sense. Two different formulations are provided. The 
first formulation uses a linear weighting for the IMF. 
The second approach adopts a bidirectional weighting, 
specifically, it not only makes use of weighting for IMF 
modes, however also makes use of the correlations 
among samples in a specific window and performs 
filtering of these samples. 
 

PROPOSED METHODOLOGY 
 

In this study, largely concentrated on HSI images 
and demonstrates the most significant uniqueness of 
pixel for spatial and spectral domain. Having narrow 
band intervals allows the extension of discovery and 
classification actions to targets earlier not noticeable in 
multispectral images. For several applications, 
dimensionality reduction is an essential preprocessing 
phase to acquire a smaller set of characteristics that 
summarize the information in the HSI cube without 
losing any significant information and as a result 
circumvent ‘the curse of dimensionality’. In HSI 
methods all of the methods extract spectral and spatial 
features pixels, which don’t exactly extract shape of the 
image. This study proposes a novel canny edge 
detection methods to extract the edge features of the 
images and then the extracted edge features are 
estimated with the help of Weibull Probability Density 
Function (WPDF). Each observation from WPDF 
represents the shape of the image in accordance with 
the gradient value from hybrid canny edge detection 
method. In this study initially carry out dimensionality 
reduction with the assistance of Kernel Fisher 
Discriminant Analysis (KFDA). This method maps the 
entire hyperspectral data from the original feature space 
and maps the useful features. KFDA scheme is 
employed for the purpose of dimensionality reduction 
which represents a high dimensional feature space 
defined implicitly by means of a kernel function. 
Subsequently, Improved Empirical Mode 
Decomposition (IEMD) scheme is applied to improve 
gradient level of spatial data to separately identifiable 
of Intrinsic Mode Functions (IMFs) of each of band. In 

the process of IEMD scheme, IMFs weight values are 
determined by means of Gaussian Firefly Algorithm 
(GFA). IMFs are employed as feature data vector for 
Support Vector Machine–Fuzzy Sigmoid Kernel 
(SVM-FSK) classification framework. The FSK is 
employed as a kernel function in an SVM classification 
framework in order to classify even the mixed pixels 
HSI images. The objective function results of the FSK-
SVM are estimated based on the Hierarchical Dirichlet 
Process (HDP)–Hidden Markov Model (HMM). 
Proposed work representation of the entire system is 
illustrated in Fig. 1.  
 

Dimensionality reduction using Kernel Fisher 

Discriminant Analysis (KFDA):  In this study, 

proposed a Kernel Fisher Discriminant Analysis 

(KFDA) scheme (He et al., 2006) for the purpose of 

removing and reducing the feature space for HSI is 

defined implicitly by means of a kernel. The 

effectiveness of KFDA scheme is completely based on 

the selection of the kernel. Consider X = (x1,…xn), x ∈ 

χ represents the HSI samples which is a random subset 

of Rn, for every image samples the spatial and spectral 

features of the samples is indicated as x ∈ ℱ = {fs1, 

…fsm} as the feature from 1 to m. A symmetric 

function K: ℱ × ℱ ⟶ R is known as kernel function 

among two hyper spectral features when it meets the 

finitely positive semi-definite characteristic: For any 

hyper spectral features samples fs1, …fsm the gram 

matrix G ∈ ℝm×m
 is given as: 

 G�� = K
fs�, fs��                 (1) 

 

K implicitly maps the input HSI samples with 

features F with a high-dimensional Hilbert space ℋ 

equipped with the inner product �. , . �ℋ   by means of a 

mapping feature space �: ℱ ⟶ ℋ: 

 K�o, p� = �ϕ�o�, ϕ�p��ℋ , ∀o, p ∈ ℱ                (2) 

 

Inner product �ϕ�o�, ϕ�p��ℋ is known as Hilbert 

space. This space is also called as feature space, it is 

completely based on the kernel function K and will be 

indicated as �k & ℋk. The feature space of the HSI 

samples is given in the type of objective function h(fs), 

in order to learn hyper spectral feature samples decision 

is done between two dissimilar feature samples in the 

kernel function ℋk: 

 h�fs� = sgn�w�ϕ �fs� + b�                            (3) 

 

where, w ∈ ℋk indicates the feature vector weight 

values b ∈ R be the bias value for feature samples is the 

intercept and: 

 sgn�u� = $ positive feature if u > 0negative feature if u < 0.              (4) 
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Fig. 1: Entire architecture of proposed work 

 

The data which are necessary to perform KFDA 

are the means and covariances for dimensionality 

reduced features in the feature space. In actual fact, to 

carry out dimensionality reduction process for HSI 

samples KFDA with the sample means: 

 μ0 = 12 3 ϕ �fs��2�41                                            (5) 

 30 = 12 3 ϕ �fs��2�41 − μ0                          (6) 

 

The fundamental concept of KFDA is to find a 

track in the HSI feature space ℋk onto which the 

projections of the two sets between two different hyper 

spectral feature samples are well separated. 

Specifically, the separation between two different 

features of hyper spectral features is measured by the 

ratio of the variance and mean. Consequently, KFDA 

maximizes the FDR: 

 FD8�w, K� = 9 :;�<=�>?
:;�@=A8B�:                            (7) 

 

where, λ indicates a positive regularization parameter 

and I indicates the identity operator in HSI feature 

space ℋk. The weight value of the every feature space 

is decided in accordance with the Gaussian Firefly 

Algorithm (GFA), can show that the weight vector for 

feature space: 

 w∗ = �Σ0 + λI�G1. �μ0�                                       (8) 

 

increases the FDR. The maximum FDR is realized by 

w* is given by: 
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FD8∗ �K� = max:∈ℋJ{L} FD8�w, K� = �μ0�N�Σ0 + λI�G1�μ0�        (9) 

 

Shape detection using hybrid canny edge detection 

and WPDF: During this phase, the shape is detected 

from HSI samples by applying Hybrid Canny Edge 

Detector to obtain edge pixels as Primitives. HSI 

samples are divided into sub-images with every sub-

image then processed using a revised canny operator 

(Li et al., 2014). The output image is constructed by 

means of assembling results from these sub-images. A 

typical canny operator makes use of the following 

phases to extract edges:  

 

• Eliminate white Gaussian noise by means of 

smoothing the image using a Gaussian filter.  

• Compute the magnitude and direction of the 

gradient at every pixel. Consider f(x, y) represents 

raw HSI Laplacian of Gaussian operator (LoG) has 

been found that makes use of the second-order 

image derivative, also known as Laplacian 

magnitude, for the purpose of extracting edges. The 

Laplacian magnitude is given as: 

 ∇Pf�x, y� = R?S�T,U�RT? + R?S�T,U�RU?                                (10) 

 

• When the gradient’s magnitude at the processing 

point is bigger than the two neighbours’ gradients, 

when placed in the gradient route, the processing 

pixel is spotted as the edge. If not, it is regarded as 

the background.  

• Make use of hysteresis thresholding to eliminate 

weak edges. 

 

Applying this scheme to real HSI samples observed 

that inaccuracies in segmentation outcome principally 

from step 3, because it is a process that is extremely 

sensitive to noise. This is the cause why an substitute 

scheme is formulated depends based on Fuzzy Entropy 

is initiated. Fuzzy entropy is a kind of entropy of a 

fuzzy set indicating the information of ambiguity for 

the entire categories of images and applications. It is 

normally employed to quantify the value of input image 

and P(X) as the probability mass function for HSI 

samples, subsequently the equivalent entropy H is given 

as follows: 

 H�x� = 3 P�x��HI�x��� = − 3 P�x�� logY P�x���             (11) 

 

where, HI indicates the information content of HSI 

samples x and b is the base of the logarithm. 

In case of a HSI, there are typically two classes, 

objects and background. When a membership function 

is characterized, the degrees of spectral and spatial 

pixels belonging to the diverse sets can be computed. In 

accordance with the obtained memberships, spectral 

and spatial pixels can be divided into correct groups; 

the fundamental concept behind pixel clustering. Here, 

the Fuzzy Entropy theory is employed to differentiate 

gradients for edges from ones generated by noise. The 

gradients of the HSI produced with the canny operator 

are a set of values which can be categorized into two 

groups, edges and noise. At this point, the membership 

functions, µ, are given as: 

 

μT = Z 0, xYGTYG[ , a ≤ x ≤ b1, x > ^ .                                         (12) 

 

As a result, the gradient increases the joint entropy 

of this fuzzy set is fixed as the threshold. The 

conception of joint entropy was initially formulated. 

Consider the entropy as H, in order that the entropy for 

set of edges from hyper spectral image A can be given 

as follows: 

 H�A� = − 3 <`���abc�d�e�41 log <`���abc�d�                          (13) 

 

where, P(A) represents the probability value of edges 

corresponding to the hyper spectral image A, hj = 
fbfghgij, 

Nj represents the number of points whose gradient is 

equivalent to j and Ntotal indicates the number of total 

points. Thus, the joint entropy is given as: 

 H�AB� = H�AlB� + H�B� ≤ H�A� + H�B�       (14) 

 

They happen to be equivalent if and only if these 

two sets of data are independent. Based on (14), it is 

clear that the process of thresholding is converted to 

that of discovering the maximum of the total entropy of 

gradients. The detected edge pixels from HSI samples 

are provided as two directions (x, y) ∈ HI. Edge pixels 

obtained from hybrid canny edge detection schemes to 

discover the edges of the HSI samples to determine the 

shape of the object. For this purpose, Weibull 

Probability Density Function (WPDF) probabilistic 

framework is employed. Hence, characterize possible 

edge pixels as continuous random PDF variables. 

Subsequently, estimate the shape edge pixels in 

accordance with their PDF by considering the extracted 

edge pixels as observations. WPDF with continuous 

random variables is characterized for extracted edge 

pixels. The Weibull distribution that functions in 

accordance with the shape parameter value is a versatile 

most extensively lifetime distributions in consistency 

engineering, consequently constituting the features of 

other categories of distributions. The 3-parameter 

WPDF is given as:  
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Table 1: Parameters of Gaussian Firefly Algorithm (GFA) 

Parameters Values Description 

α 0.2 Alpha  

β0 0.3 Beta0 

γF 0.2 Gamma 
Iterations 20 Generations 

 N�x, y� = no 9TGUo >nG1 eG9`pqr >s
                            (15) 

where, 
  t ≥ 0, β > 0, u > 0, −∞ < v < +∞  
 
η  =  Scale parameter  
β =  Slope parameter  
γ  =  Location parameter values for HSI 
 
This WPDF meets the two constraints as: 
 w w N�x, y� = 1 &UT N�x, y� ≥ 0, ∀�x, y� 

 
Improved EMD for spectral gradient: Subsequent to 
feature dimensional space results from the KFDA 
scheme, carried out mixed pixel wise characterization 
probabilistic classification framework to enhance the 
classification rate of HSI images. For that function, 
initially required to approximate gradient level of the 
HSI images in inside lessens feature space 
hyperspectral data for both spectral and spatial data. 
The gradient level of spectral data is approximated by 
means of Empirical Mode Decomposition (EMD) 
methods and spectral information data are reorganized 
with the help of IMFs. In this study, IMFs takes part 
considerable role to enhance the gradient level of 
spatial data, as a result the computation of weight 
values for IMF becomes also significant. The weight 
values of the IMF IMFSOW1 are computed using 
Gaussian Firefly Algorithm (GFA) (Farahani et al., 
2011), it enhances the classification accuracy rate for 
mixed pixel wise SVM-FSK hyperspectral data. As a 
result, the mean value of restructuring spectral gradient 
data is employed as the target purpose of the ABC: 
 f�IMFSOW[� = SpecGrad =1d×�×� 3 3 3 �R����2,�,Y�RY ��Y41��41d241             (16) 

 
where, FSO indicates the hyperspectral reduced feature 
dimensional space image sample, A and B represents 
the spatial dimensions and S represents the number of 
spectral bands. The weight values of the IMFs match to 
somebody of the FA with firefly initial population. 
IMFs weight values are computed through the 
searching flashing behavior of firefly. The weight 
values of IMF are revised in accordance with flashing 
behavior of the each firefly for weight values of IMF in 
the searching space. The present weight values of the 
IMFs for local HSI images and complete HSI image 

samples weight values (IMFs) are compared against 
each others to choose best IMFs weight values to the 
overall gradient process. The current location for each 
firefly is to calculate the weight values of hyperspectral 
reduced feature dimensional space IMF is given as: 
  IMFSOW[ = �imfsow[1, imfsow[P, … . , imfsow�}  
 
where, D denotes the dimension of IMFs weight values. 
In GFA, each IMF weight values are regarded as 
Fireflies. Yang employed this behavior of fireflies and 
launched Firefly Algorithm in Yang (2010). 
Subsequently, most significant three characteristics as 
mentioned above to carry out to calculate weight values 
for IMF function: 
  

• The entire fireflies are unisex. As a result, IMF 
weight value will be attracted to other IMF weight 
value not considering their sex;  

• Attractiveness βo is relative in accordance with 
their brightness. As a result, for any two flashing 
IMF weight values, the less bright IMF weight 
value will shift in the direction of the brighter IMF 
weight value. When there is no brighter one IMF 
weight value is found than a specific weight value 
of IMF (firefly), it will travel arbitrarily;  

• The brightness one weight value for IMF (firefly) 
is influenced as a result of fitness function from 
f(IMFSOWa) (16). For a maximization setback, the 
brightness weight value can simply chosen in 
accordance with the fitness function from 
f(IMFSOWa) (16). The parameter values of the 
GFA are given in Table 1. 

 

Social behavior: Random walk is a executed for the 
purpose of selecting each IMF weight value arbitrarily 
based on Brownian motion. With the intention of 
moving the entire IMF weight values, random walk 
concept is used based on a Gaussian distribution that is 
given as: 
 p = f�IMFSOW[lμ, δ� = 1��P� eG�B�����iG<�?/P�?

           (17) 

 
where, er indicates an error between best IMF weight 
value solution and fitness value of IMF weight values 
(firefly): 
 er = f�gY���� − f�IMFSOW[�                            (18) 
 
µ = 0 and δ = 1, represents the mean and standard 
deviation function correspondingly. Social behavior of 
IMF, weight values (fireflies) is introduced by: 
 IMFSOW[� = IMFSOW[� + α ∗ �1 − p� ∗ rand��             (19) 
 
where, α represents firefly parameter that is regulated 
through adaptive parameter scheme. In this scheme, 
GFA depends on the random walk each IMF weight 
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firefly IMFSOWa movement is pulled towards the best 
objective function is provided in Eq. (16).  
 

Algorithm 1: Gaussian firefly algorithm (GFA) 

Initialize algorithm parameters: Objective function 

of f(IMFSOWa) from, where IMFSOW = (IMFSOW1, 

… …, IMFSOWa)
T
 

Create initial population of fireflies as number of 

weight values in IMF  

Describe light intensity of Ia at IMFSOWa by means of 

f(IMFSOWa), from Eq. (16) 

While (t < MaxGen)  

For a = 1 to n (all n fireflies);  

For b = 1 to n (all n fireflies);   

If (Ib>Ia), move firefly a in the direction of b; end if 

Attractiveness varies with distance r by means of Exp [-

r2 and γF 

Calculate new IMF, weight values solutions and revise 

light intensity; 

End for b 

End for a 

Rank the current weight value for IMF and discover the 

current best weight values with the help of (16) 

Define normal distribution  

For c = 1, …, n all c fireflies  

Draw a random IMF weight value and execute 

Gaussian distribution  

Evaluate new solution (new solution(c))  

Id new (new solution (c)<solution (a)&&(new solution 

(c) < last solution(c))  

Move chosen IMF weight in the direction of spectral 

gradient enhancement  

End if  

End for c 

End while; 

Post process results and visualization; 

End procedure; 

Return the best weight values for IMF and its fitness 

value IMFSOW1 

The updated weight values of IMFs by means of their 

respective weights to get hold of the new hyperspectral 

data representation that will be employed for 

classification is given as: 

 RHIB = 3 IMFSOw[ × IMFSO[��41             (20) 

 

where, IMFSOWa demonstrates the equivalent weight 

of the IMF, R is the overall number of IMFs employed 

in the reconstruction process and RHIB indicates the 

reconstructed HSI band. 

Then execute classification technique. 

 

Spectral and spatial characterization using SVM-

FSK: Then the gradient level of spectral and spatial 

information for HSI images are determined from 

improved EMD approaches and then execute 

probabilistic mixed pixel-wise SVM-FSK classification 

framework. The objective function outcome of SVM-

FSK is estimated by means of HDP-HMM. In order to 

learn mixed pixel-wise SVM-FSK based classification 

results, approximate the HDP-HMM probability value 

to every spectral gradient information from improved 

EMD to enhance the classification outcome. Fuzzy 

sigmoid kernel function is employed as kernel function 

to SVM classification approaches with the intention of 

enhancing classification outcome of HSI images. SVM-

FSK approach potentially recognizes appropriate and 

inappropriate features vectors through maximization of 

margin size among feature vectors. The exploitation of 

Fuzzy sigmoid kernel function discovers the 

maximization of margin hyperplane is converted in 

spatial domain version. In view of the fact that 

maximum margin classifiers are well standardized 

techniques and it doesn’t corrupts the performance of 

classification for infinite dimensional data. Shorten the 

operation of mixed pixel wise SVM-FSK classification 

structure and determining the similarity between 

variables, it employs inner product as metric. In these 

classification approaches, when any dependent 

variables exist, those variables information might be 

lodged through supplementary dimensions and 

consequently can identify by a mapping (Samuelson 

and Brown, 2011). In this study, let SGFSIIi = 

{SGFSII1, SGFSII2, ….SGFSIIn} represent the spectral 

gradient outcome from IEMD based GFA approach 

with diminished feature dimensional space. Also let 

SGFSIIi = [SGFSIIi1, …., SGFSIIid]
T
 which represents 

the spectral gradient outcomes that related with reduced 

feature dimensional images pixel SGFSIIi ∈ SGFSP. 

The SGFSP is characterized as a spectral gradient pixel 

SGFSP ∈ {1, 2,…., n} with indexing of n pixels of  

SGFSIIi & SGFSB in which SGFSB indicates the 

amount of spectral gradient feature space bands.  

SGFSOI = [SGFSOI1, SGFSOI2, …, SGFSOI1c, …, 

SGFSOI1k]
T
 represent the classification results of SVM-

FSK, in which C indicates the quantity of classes 

SGFSOIic = {+1, -1, middle class} for c = 1, …C and 3 SGFSOI���  = 1 � (.) is indicated as non linear 

mapping function of gradient function, it is carried out 

in  accordance  with  the  Cover’s  theorem (Zemzami 

et al., 2013), which promises elevated classification 

accuracy rate for linearly separated feature vector 

samples and it is commonly higher dimensional feature 

space fs: 

 min�,��,��2Y �1P llwllP + β��3 ξ�� �                          (21) 

Constrained to the: 

 SGFSOI��ϕN�j�W + ba� ≥ 1 − ξ�                     (22) 
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∀i = 1, … . n ξ� ≥ 0 ∀i = 1, … . n                                         (23) 

 

where, W&svmb represents a linear classifier for 

spectral gradient HSIs. Classification outcome of SVM 

approaches are managed by regularization constraint β 

and it is automatically selected by user, the error values 

of feature vectors are indicated by the parameter ξi. The 

result of mixed pixel wise SVM-FSK classification 

framework is approximated depending on probabilistic 

method HDP-HMM is given below: 

 

SGFSOI�� =  ¡
¢1 if p�SGFSOI�� = 1lSGFSII�, SGFSTR��> ¤
SGFSOI��g = 1¥SGFSII�, SGFSTR�� ∀c� ≠ c0, otherwise

.
                                           (24) 

 

In order to enhance the classification accuracy, in 

this attempt employs a kernel function K: 

 K�SGFSOI�, SGFSOI� � = ϕ�SGFSOI��. ϕ
SGFSOI�� 

                             (25) 

 

This kernel function result not enhances 

classification accuracy rate for certain data, to 

overcome these complication, in this study kernel 

function are approximated depending on fuzzy sigmiod 

function is defined in Eq. (24) given below: 

 

    f�SGFSOI� = sgn 3 SGFSOI�SGFSOI�α�α���,�41                                           K
SGFSII�, SGFSII�� + svmb                                     (26) 

 

where, the SVM biases value (SVMb) of fuzzy kernel 

can be effortlessly computed from the αq, it happens to 

be neither 0 nor C. This study extends the fundamental 

ideas of hyberbolic tangent function from (Soria-Olivas 

et al., 2003) and it is given as follows (25): 

 
SGFSII�, SGFSII�� =
 ¡
¢ −1 SGFSII�. SGFSII� is low+1 SGFSII�. SGFSII� is highm. SGFSOI�. SGFSOI� SGFSII�. SGFSII� is medium

.            (27) 

 

where, m represents a constant value indicating the 

effectiveness of the sigmoid tract. In the statement of 

fuzzy logic idea, the sigmoid kernel function is defined 

as collection of fuzzy membership functions. Several 

fuzzy membership functions presents; however in this 

study only concentrated on three triangular function, 

owing to their simplicity. Subsequent to FSK function 

be continuous, as a result the expression (26) can be 

readily re-written as a function of a and γ, as follows: 

K�SGFSII�, SGFSII�� =
 §§
¡
§§¢−1 SGFSII�. SGFSII�  ≤ γ − 91[>+1 SGFSII�. SGFSII�  ≥ γ + 91[>2
SGFSOI�. SGFSOI� − γ�−aP
SGFSOI�. SGFSOI� − γ�l�SGFSII�. SGFSII� − γ�l

.           (28) 

 
which is the absolute form of the proposed fuzzy 
sigmoid (fuzzy tanh) kernel. In addition, measure the 
outcome of fuzzy sigmoid kernel function through 
objective function for I labeled training samples that is: 
 TS� = �SGFSII1, SGFSOI1�, … … � SGFSII�, SGFSOI�� 

  
Based on the above discussed steps, the major 

function is to approximate the probabilistic value for 
mixed pixels SGII1 with class label vector SGFSOI1. 
This vector results can be obtained from HDP-HMM 
through the computing probability function: 
 

SGFSOI�� = ª1 if p�c�«��BB = klSGFSOI, θ� > p�ct�«��BB = klSGFSOI, θ�∀c� ≠ c0 otherwise
.             (29) 

 

Probability estimation using HDP-HMM: In this 

research study, a concept of the Hidden Markov Model 

(HMM) with Hierarchical Dirichlet Process (HDP) is 

used and it is named as HDP-HMM, formalism for each 

spectral gradient input image with number of spectral 

gradient diminished feature space input sample states 

SGFSIIq = {SGFSII1, SGFSII2, ….SGFSIIn}, which 

includes number of output classes SGFSOIqc = {+1, -1, 

middle class} for c = 1, …, C of spectral gradient 

diminished feature space. In order to re-estimate the 

error found by SVM function, value for spectral 

gradient input image computation of backwards process 

from spectral gradient t input samples to t+1 input 

samples. The (Ft)  variables point out that there is a 

Markov changeover at spectral gradient t input samples 

to t+1 input samples with diminished feature sample 

space and Ft = 1, as: 

 β��i� ≜ p�SGFSOI�A1: TlSGFSII� = i, F� = 1� = w β�∗� �j�p�SGFSII�A1 = jlSGFSII� = i� 

β�∗�i� ≜ p�SGFSOI�A1: TlSGFSII�A1 = i, F� = 1� 

 

= 3 β�A�NG��41 �i� P�D�A1 = dlSGFSII�A1 = i�°±±±±±±±²±±±±±±±³°±±±±±±±²±±±±±±±³�´µ[��¶� ¶S ·µ�¶µ ��µ2
     (30) P�SGFSOI�A1:�A�lSGFSII�A1 = i, D = d�¸¹¹¹¹¹¹¹¹¹¹¹º¹¹¹¹¹¹¹¹¹¹¹»e� ���a¶¶� ��µ2  

β��i� ≜ 1 

 

In order carry out the above step in perfect way, 

divide the number of states into β, β* and make use of 

SGFSOIt+1 to indicate SVM-FSK function estimate
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Table 2: Notation used in proposed methodology 

Notation Explanation 

x Hyperspectral features training samples 

{fs1,…fsm} Hyperspectral spectral and spatial features samples  

K: ℱ×ℱ ⟶R Kernel function  

G ∈ ℝm×m
  Gram matrix  ϕ Kernel linear map function 

Hk Hillbert kernel space for feature samples  

w Feature vector weight values 

b ∈ R  Be the bias value for feature samples 

Sgn(u) Sigmoid function for features 

µK Mean value for features 

w¼  

Covariance matrix value for features  

i = 1, ….n, j = 1,…m Feature samples for HSI 

 h(fs) Objective function for dimensionality reduction of features 

FDλ(w, K) Fisher discriminant analysis  

P(FS) Gibb’s prior to derive the principal component analysis 

λ is a positive regularization parameter 

I is the identity operator in HSI feature space Hk  

F(x, y) Hyperspectral raw image ∇P ½�¾, ¿�  Laplacian magnitude 

H(x) Entropy 

H1 Information content of HSI 

µx Fuzzy membership function  

Nj is the number of points whose gradient is equal to j  

Ntotal Denotes the number of total points 

N(x, y) 3-parameter Weibull pdf 

η Scale parameter 

β Slope parameter 

γ Location parameter values for HSI 

A and B  are the spatial dimensions, 

S is the number of spectral bands 

IMFSOWa Intrinsic mode function weight values  

D Denotes the dimension of IMFs weight values 

FSo 
hyperspectral reduced feature dimensional space image sample  

f(IMFSOWa|µ, δ) Gaussian distribution 

er Error between best IMF weight value solution and fitness value of IMF 

Weight values 

µ = 0 and δ be the mean and standard deviation function for firefly  

α Firefly parameter 

Ib Intensity value for IMF weight values 

RHIB The updated weight values of IMFs 

R Total number of IMFs used in the reconstruction, 

SGFSII1 Spectral gradient reduced feature space input sample  

SGFSP Spectral gradient pixel 

SGFSOI Spectral gradient reduced feature space output  

SGFSOI ic = {+1, -1, middle class} Number of the classes for input sample  

svmb SVM Bias values for pixels  

Βc1 Regularization parameters for classification  

ξi Error values of feature vectors 

m Constant value representing the effectiveness of the sigmoid tract 

γ - 
1[  where γ + 

1[  Fuzzy membership limits 

K(SGFSIIi, SGFSIIi) Fuzzy sigmoid (fuzzy tanh c) kernel. 

l Labeled training samples 

SGFSOI qc = {+1, -1, mc}  Spectral gradient output image pixels classes  

t to t+1  Reduced feature HSI samples  

Ft Markov transition at spectral gradient t  input samples  

β, β*  States of HMM for each hyper spectral reduced feature samples 

P (Dt+1 = d|SGFSIIt+1 = i) Duration of prior term  for hyper spectral reduced feature samples  

P (SGFSIIt+1; t+d |SGFSIIt+1 = i, D= d)  Likelihood term 

πj Initial probability matrix for hyper spectral reduced feature samples  

zs As a super-state s for spectral gradient input samples with reduced 

dimensional space ÀÁÂÃÂ41Ä
   To represent the parameters value for each one of the Dt+1  

D Denotes the {+1, -1, middle class} class 
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results, subsequently HDP-HMM utilizes a prior 
suggestions to approximate SVM-FSK function for 
every spectral gradient reduced feature dimensional 
space sample: 
                           βlγ~GEM�γ�, π�lβ, α~DP�α, β�,  θ�lH, λ~H�λ� ω�lΩ~Ω τ ≔ 0, s ≔ 1, while τ < Ì ÍÎ: z�l{π�}�41Ä , z�G1~πÐÑÒpÓ  D�lω~D�ωÔÒ� SGFSOI� = SGFSOIÕA1:Õ + D� + 1 l{θ�}�41Ä , z�, D�iid~  f
θÔÒ� τ ≔ τ + D� s ≔ s + 1              (31) 
 
πj represents the initial probability matrix for hyper 
spectral reduced feature samples, zs indicates a super-
state s for spectral gradient input samples with reduced 

dimensional space and ÀÁÂÃÂ41Ä
 to indicate the 

constraint values for each one of the Dt+1, with D 
indicates the {+1, -1, middle class} class. To estimate 
SVM-FSK, in HDP-HMM, calculate backward values 
for β and β* in (30), subsequently posterior probability 
of input sample states SGFSIIq = {SGFSII1, SGFSII2, 
…., SGFSIIn} in the HMM state in accordance with: 
 p�SGFSII1 = ilSGFSOI1:N�∝ p�SGFSII1 = i�p�SGFSOI1:NlSGFSII1 = i, FL = 1� = p�SGFSII1 = i�βL∗ �i�                                      (32) 
 

The posterior probability value for input sample 
states SGFSIIq = {SGFSII1, SGFSII2, ….SGFSIIn} in 
HMM state is represented via: 

                                         p�D1 = dlSGFSOI1:N, SGFSII1 = SGFSII×××××××××1, FL = 1� = ·��Ó4��·��«���BÓ:Øl�Ó4�,�«��BBÓ4�«��BB××××××××××Ó,�Ù41�nØ��«��BB××××××××××Ó�nÙ∗ ��«��BB××××××××××Ó�  (33) 

 

Reiterate the steps by considering SGFSII�Ó +1 with 

initial distribution given by p(SGFSII�Ó +1 = i|SGFSII1 = SGFSII×××××××××
1). On the other hand, it is obvious that, when the 

state space of HMM is huge, some of other sequences 
might be also interested to carry out mixed pixel wise 
probabilistic estimation. The notation in the proposed 
work and their explanation is specified in Table 2,  

 

EXPERIMENTAL RESULTS 
 

Experimental results are provided for three 
hyperspectral data sets which are commonly used to 
evaluate the performance of hyperspectral classification 
algorithms, namely, the Indian Pine data in Table 3. 
The Indian Pine data set, which was taken over Indiana 
in 1992, consists of 145×145 pixels and 220 spectral 
bands. The spectral bands containing atmospheric noise 
and water absorption are removed, resulting in 200 
bands. The spectral range of the data is 0.4-2.5µm and 
the spatial resolution is 20 m. Although the original 
ground-truth data contain 16 classes, the classes with a 
small   number  of  samples  are usually ignored and the  

Table 3: Indian pine data 

Class No of samples  

Corn-No till 1434 

Corn-Min till 834 
Grass/Pasture 497 

Grass/Trees 747 

Hay-Windrowed 489 
Soybean-No till 968 
Soybean-Min till 2468 
Soybean-Clean 614 
Woods 1294 
Alfalfa 54 
Building /Grass/Trees/Drives  380 
Corn 234 
Grass/Pasture-Mowed 26 
Oats 20 
Stone-steel-towers 95 
Wheat 212 

 

 
 

Fig. 2: The input image samples from Indian pine data se 
 

 
 
Fig. 3: Noise incorporated input samples from Indian pine 

data set 
 

 
 

Fig. 4: Shape detection using hybrid canny edge detection 

and WPDF from Indian pine data set 

 

nine classes with a high number of samples. The Indian 

Pine data set is one of the most commonly used HSI. It 

is regarded to be a challenging data set, which is 

difficult to classify, because the spectral signatures of 

some classes are very similar and the pixels in the 

image are heavily mixed. Figure 2 Illustrates the input 

image samples from Indian Pine data set. After the 

noise values are added to input image samples is also 

illustrated in Fig. 3. 

The shape detection results using hybrid canny 

edge detection and WPDF for Indian Pine data set 

samples  are  shown  in  Fig. 4.  This  Table 4 shows the 
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Table 4: Indian pine data results for spectral gradient  

Training data EMD 

EMD-

SEGA 

EMD-

SEPSO 

EMD-

SEGFA 

10 93.7 94.5 95.42 96.56 

20 93.81 94.65 95.51 96.38 

30 93.98 94.78 95.64 96. 69 

40 94.21 94.89 95.87 96.38 

50 94.35 95.12 96.22 97.24 

 

Table 5: Indian pine data classification results 

 

Mean (Ú� 

------------------------------------- 

Standard deviation (Û� 

--------------------------------------- 

Training 

data 

SVM-

RBF 

SVM-

FSK 

SVM-FSK 

after edge 

detection 

SVM-

RBF 

SVM-

FSK 

SVM-FSK 

after edge 

detection 

10 93.5 95.23 96.89 1.4 1.21 1.02 

20 93.85 95.41 96.92 1.25 0.81 0.56 

30 94.24 95.64 96.38 1.2 0.738 0.65 

40 94.39 95.92 96.79 1.18 0.73 0.66 

50 94.9 96.32 97.81 1.08 0.71 0.63 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Indian pine data results for spectral gradient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 6: Indian pine data classification results 

 

overall accuracy of results for the original data 

representation as well as the EMD and the proposed 

EMD with spectral enhancement (denoted as EMD-SE) 

with PSO compare with existing EMD-SEGA. 

Figure 5 shows the overall accuracy of results for 

the original Indian Pine data representation as well as 

the    EMD    and    the    proposed    EMD with spectral 

enhancement and GFA is denoted as (EMD-SEGFA) 

compare with  existing  methods such as  EMD-SEPSO,  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Standard deviation for classification results 

 

EMD-SEGA and EMD. It shows that proposed EMD-

SEGFA spectral enhancement achieves higher 8.96% 

accuracy than earlier EMD-SEPSO methods, since the 

proposed work the shape detection is performed based 

on the Hybrid canny edge detection and estimated using 

WPDF, which produces exact classification results for 

all HSI images samples (Table 5). 

Figure 6 classification performances are evaluated 

using mean function. The SVM classification with RBF 

kernel and SVM classification with Fuzzy sigmoid 

function of before and after edge detection. A 

classification result with respect to highest mean values 

shows the better accuracy results. It shows that 

proposed SVM-FSK (Support vector machine –Fuzzy 

Sigmoid Kernel) after the edge detection have achieves 

higher mean values when compare to before edge 

detection of the SVM-FSK and SVM-RBF (Support 

vector machine-Radial basis function) methods.  

Figure 7 classification performances are evaluated 

using standard deviation function. The SVM 

classification with RBF kernel and SVM classification 

with Fuzzy sigmoid function of before and after edge 

detection. A classification result with respect to lowest 

standard deviation shows the better classification 

accuracy results. It shows that proposed SVM-FSK 

(Support Vector Machine-Fuzzy Sigmoid Kernel) after 

edge detection have less standard deviation than SVM-

RBF (Support vector machine – Radial basis function) 

and before edge detection of SVM-FSK method, is 

illustrated in Fig. 7. 

 
CONCLUSION AND RECOMMENDATIONS 

 
In this study, the complication of dimensionality 

reduction and shape detection for HSI is taken into 
consideration in order to enhance classification 
accuracy. With this aim, this study presents Support 
Vetor  Machine  (SVM)-Fuzzy  Sigmoid  Kernel  (FSK)  
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framework in the context of classification of 

hyperspectral data. Specifically, EMD-based scheme 

with spectral gradient enhancement has been 

formulated for HSI classification. EMD is employed for 

the purpose of decomposing hyperspectral bands into 

their IMFs. GFA-based optimization is then employed 

for the purpose of increasing the spectral gradient of the 

EMD-based representation by means of obtaining the 

weights of IMFs in an attempt to optimize the spectral 

gradient. At the same time, KFDA is used to reduce the 

data dimensionality, suppresses unwanted or interfering 

spectral signatures and identifies the occurrence of a 

spectral signature of interest. The fundamental idea is to 

project each pixel vector onto a fisher discriminant 

subspace with kernel values. In this study, hybrid 

Canny edge detection operator and the Fuzzy Entropy 

theory has been established to identify the shape of 

each object in HSI samples. The edge detection 

outcome is estimated based on the Weibull Probability 

Density Function (WPDF). SVM-FSK classifier is 

proposed for the purpose of classification of mixed 

pixels wise spectral spatial data. The SVM-FSK results 

is estimated in accordance with the HDP-HMM for 

mixed pixelwise characterization of complete image 

and a set of previously derived class combination maps, 

correspondingly. The proposed approach SVM-FSK 

with HDP-HMM, which intends to characterize mixed 

pixels in the scene and assumes that these pixels are 

normally mixed by only a few constituents, offers 

certain distinctive features with regards to other 

existing schemes. Experimental results confirm that the 

proposed SVM-FSK approach provides a significant 

increase in class separability for both synthetic and real 

hyperspectral scenes of various classification methods. 

The approach is applicable to both spectrally pure as 

well as mixed pixels. Further developments of this 

study include a comprehensive research of the influence 

of the KFDA algorithm used to enforce investigation of 

the possibility of including contextual spatial 

information within the SVM-FSK framework. The 

SVM is computationally less demanding for small 

training sets, so which is solved by using applying other 

classification methods such as Fuzzy Neural Network 

(FNN), Extreme Learning Machine (ELM) and their 

types, online dictionary learning schemes, etc to reduce 

the time complexity during classification process. 
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