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Abstract: In the study, a new distributed hardware-level method for barrier synchronization of parallel processes in 
a mesh-connected parallel system is presented, which is based on the use of a virtually sliced barrier control network 
timed by two bidirectional clock pulse waves originating from the corner processors of the mesh. 
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INTRODUCTION 

 
Barrier synchronization is known to be a specific 

form of massive interprocessor communication in 
multicomputer and multiprocessor systems which 
guarantees a given precedence relation between code 
sections. It involves no data transfer, but highly affects 
the computer system performance.  

A barrier, a cornerstone entity of barrier 

synchronization, is typically defined as a logical 

delimiter in the control flow of a parallel program, at 

which all or some processes (threads) must wait for 

their peers to proceed simultaneously (Axelrod, 1986). 

When a barrier is executed, two phases take place. 

During the first phase (known as “reduction”), each 

participating process reports of its arrival and starts 

waiting for the barrier to complete. The second phase 

(known as “distribution”) begins as soon as all the 

participants have reached the barrier and it goes on until 

all the peers are notified that they can resume. Barrier is 

a fundamental collective communication procedure in 

parallel programs developed using the MPI (Forum, 

2012) and OpenMP (OpenMP Architecture Review 

Board, 2011) parallel programming standards. 

According to these standards, specific syntax to support 

barrier synchronization on a process group or a thread 

team is used (MPI_Barrier() and #pragma omp barrier 

in C/C++, respectively). 

In the four past decades, there have been developed 

a wide range of methods for barrier synchronization. 

Depending on the implementation level existing 

methods can be divided into three classes: software 

(Tsafrir  and  Feitelson,  2002;  Li  et  al., 2004; Tzeng 

et al., 2005), hybrid (Moh et al., 2001; Hindam, 2004; 

Sampson et al., 2006) and hardware (Thinking 

Machines, 1992; Delgado and Kofuji, 1996; 

Ramakrishnan et al., 1999; Cohen et al., 2000; Johnson 

and Hoare, 2001; Zotov, 2010; Ashraf et al., 2012; Al-

Azzeh, 2013). Hardware barriers have shown to be a 

better solution in general because they are order-of-

magnitude faster than software methods and produce no 

extra message traffic compared to hybrid solutions. At 

the same time, the lack of flexibility is the main 

problem of hardware-level methods. In most cases, 

hardware barriers impose stringent limitations on the 

barrier group configuration and/or the number of 

barriers in an application and, therefore, the effective 

use of these methods in practice is not possible. 
In Zotov (2010), a new hardware-level distributed 

barrier mechanism for mesh-connected parallel systems 
has been presented to solve some flexibility issues. This 
approach, called the Distributed Virtual Bit-Slice 
Synchronizer (DVBSS), puts away the restrictions on 
the configuration of barrier groups and, in theory, it 
eliminates the limitations on the number of barriers in 
the system. However, DVBSS requires multi-bit “long” 
wraparound connections between corner processor units 
of the mesh which are rather complicated to be 
implemented and bring extra delay in the 
synchronization latency. Yet, the addition of new 
processor units to the mesh becomes an issue because 
of the necessity to physically reconnect the wraparound 
multi-bit channels. 

In the study, we extend the DVBSS approach 
presented in Zotov (2010). The objective of the study is 
to present a modified distributed hardware barrier 
architecture making it possible to transfer barrier state 
signals through the mesh in two opposite directions 
between two corner units thus eliminating the wrap 
around connections of the DVBSS network and 
providing better flexibility and scalability. We 
demonstrate that our extended scheme accepts 
dynamically defined (possibly overlapping) barrier 
groups of arbitrary size and shape, allowing 
noncontiguous group member allocations. Our 
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simulation study shows that barrier synchronization 

duration in most cases is kept as low as O (10) µsec 
depending on the peak number of instantiated barrier 
groups which corresponds to DVBSS and existing 
hybrid methods. 

 

MATERIALS AND METHODS 

 

In the study, we consider d-dimensional mesh-

connected distributed memory parallel systems. A 

target system is supposed to consist of 
1 2 d
k k k× × ×K  

processing units, where ki denotes the width of an ith 

dimension of the mesh. Each unit 
1 2, , , dx x xK  is 

connected to the corresponding neighbors by at most 

2D bidirectional links. Each processing unit is supposed 

to be capable of executing a single process of the 

application, but there can be several applications 

running in parallel in separate partitions of the system. 

It is assumed that each processor is connected to a 

router to send and receive messages. Two types of 

messages are considered-barrier and non-barrier. Non-

barrier messages are those that perform all 

communication operations, except barrier 

synchronization. Barrier messages are those that 

implement barrier synchronization and are transferred 

to/from dedicated control network (synchronizer) 

superposed on the main communication network of the 

system.  
We suppose that the parallel system under 

consideration is programmed using the extended MPI 
standard, version 3.x (Forum, 2012), but we do not 
restrict our barrier mechanism to MPI-based 
environment only. We assume that barrier groups are 
instantiated and released at runtime and there is at least 
one global barrier group in the application at any given 
moment. It is supposed that processes can be 
dynamically created and destroyed and that any process 
may be a participant of several barrier groups at the 
same time. 

It is assumed that a collection of parallel 

applications are running in parallel in the system, each 

occupying a separate partition and having its own set of 

barrier groups. No limitations on the size and shape of 

partitions are set, yet partitions may be noncontiguous. 

It is supposed that partitioning is dynamically defined, 

meaning that a partition may change as new processes 

are created or terminated. Each barrier group can be 

synchronized at any number of barriers and any barrier 

can be inside a loop which in turn can be nested. Thus, 

multiple simultaneous barriers are allowed. 

We suppose that a separate control network 

consisting of identical barrier units is superposed on the

 

 
 

Fig. 1: Directed graph representing the topology of the control network (2D case) 
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system. Each barrier unit (which we denote 

1 2, , , dx x xK ) is connected to the corresponding router 

with a separate channel and can receive/transmit 
messages from/to the local processor. Barrier units are 
connected to each other with multi-bit channels in such 
a way that any unit has the same set of neighbors as that 
of the corresponding local processor. Bidirectional 
connections are used, therefore, any neighbor of a given 
barrier unit can be both a receiver and a transmitter. 

Figure 1 shows a directed graph representing the 

topology of the control network constructed for a 2D 

mesh parallel system. Circles denote barrier units, while 

solid rectangles denote processing elements together 

with their routers. 

Each barrier unit is comprised of slices. A slice is a 

single-bit “section” of the corresponding barrier unit. 

The slices of a barrier unit are numbered consecutively 

0, 1, 2, …, m and operate in parallel. Each slice of a 

barrier unit is connected to the corresponding slices of 

the neighbor barrier units according to the network 

topology shown in Fig. 1. The set of slices having the 

same  number i  in  all  barrier  units  together with their  

connections make a single-bit physical control network 

(which can also be understood as i
th

 control network 

slice). 

To make a single-bit physical control network 

capable of performing concurrent synchronizations, we 

apply a virtualization scheme based on time-division 

channeling. We assume that there exists a set of p 

single-bit virtual control networks in a physical one. 

Also it is supposed that there is a distributed switching 

mechanism capable of activating the virtual networks 

one after another in a pipeline fashion. Barrier groups 

are mapped onto virtual control networks in such a way 

that parallel groups are assigned to different networks. 

As a result of such virtualization, each physical slice 

can be a participant of multiple barrier episodes 

associated with appropriate virtual networks allocated 

to different barrier groups. A physical slice includes p 

virtual slices numbered 0, 1, 2, …, p, where p is 

understood as the upper bound on the number of barrier 

groups assignable onto a physical control network (i.e., 

the virtualization “depth” of the synchronization 

mechanism).  

 

 
 

Fig. 2: Logical configuration of a physical slice for the reduction phase (d-dimensional case) 
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Figure 2 shows the logical configuration of a 

physical slice necessary to implement the reduction 

phase of barrier synchronization according to our 

method (reduction slice).  

Hardwired inputs IN1.1, IN1.2, …, IN1.d are used 

to connect the slice to the neighbor transmitter slices, 

i.e. those slices whose coordinates are equal to or less 

than those of the current unit by one at the only position 

(note that if there is no neighbor along a certain 

dimension j, e.g., node <1, 0> in Fig. 1 has no neighbor 

above, input IN1.j should be constant high). The only 

fan-out connection OUT is employed for wiring the 

slice to the neighbor receiver slices, i.e., those slices 

whose coordinates are equal to or greater than those of 

the current unit by one at the only position (again, there 

may be no neighbor along a certain dimension j, e.g., 

node <0, k2-1> in Fig. 1 has no neighbor below). Inputs 

IN1.i and output OUT are necessary to receive barrier 

state signals indicating the completion of the reduction 

phase for different barrier groups. 

The functions of the remaining terminals are as 

follows. Single-bit input INC is used to receive clock 

pulses    from    the    distributed   clocking   mechanism  

providing coordinated operation of the physical slices 

across the d-dimensional mesh (detailed below). The 

system reset input terminal INR allows to initially clear 

the flip-flops and registers. Single-bit input IN2 is 

required to check out a mask bit indicating if the current 

processor unit is a participant of the current barrier 

group (logical “0” stands for “yes” and logical “1” - for 

“no”). Single-bit input IN3 is necessary to check out a 

state bit indicating if the current processor has reached 

the current barrier (taken into account if IN2 equals 

“0”). [log2 p] -bit-wide input channel IN4 is introduced 

to receive the target virtual slice numbers from the local 

processor to indicate which slice is allocated to the next 

barrier to arrive at. [log2 p]  -bit-wide input channel IN5 

is necessary to receive the virtual slice count, i.e., how 

many virtual slices are currently allocated to barrier 

groups in the entire system. The system clock input bus 

IN6 is required to supply clock pulses from the local 

processor. 

In addition to the input and output terminals, the 

slice in Fig. 2 contains a collection of p flip-flops, a p-to-

1 multiplexer MX, a 1-to-p demultiplexer DX, a target 

virtual slice register, a slice count register, a counter, a

 

 
 

Fig. 3: Logical configuration of a physical slice for the distribution phase (d-dimensional case) 
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comparator CMP and gates 1 and 2 and an OR gate 1. 

The flip-flops together with the counter, demultiplexer 

DX and multiplexer MX are used to implement the 

proposed virtualization scheme. Flip-flop i (1≤i≤p) 

contains the state of the reduction phase for the current 

barrier b (fi) of barrier group fi currently mapped onto 

virtual slice i. If all the participants of group fi whose 

coordinates are less or equal to those of the current one 

have reached barrier b (fi), then flip-flop i is set to 

logical “1”. Otherwise it is reset to “0”. Which state 

should be the next is determined by the output of AND 

gate 1. 

AND gate 1 together with OR gate 1 AND gate 2 

and comparator CMP are used to produce the state 

signal for the current barrier b (fi). The output of AND 

gate 1 may go high only if all the transmitter neighbors 

of the current unit supply the signals of logical “1” to 

inputs IN1.1, IN1.2, …, IN1.d. If the above condition 

does hold, then the output of AND gate 1 starts 

depending on the output of OR gate 1. OR gate 1 issues 

“1”, if the current processor is not a participant of 

barrier group fi (the mask bit IN2 = “1”) or if it is a 

participant and AND gate 1 issues the signal of logical 

“1”. Otherwise the OR gate’s output is held low 

meaning that the current processor hasn’t yet arrived at 

the current barrier. AND gate 1 produces high output 

level, if the current processor has reached the current 

barrier (the state bit IN3 = “1”) and the comparator’s 

output is high which implies that the reduction phase 

for the target virtual slice is in progress (i.e., the 

counter’s content is the same as the target virtual slice 

read from the corresponding register). If CMP issues 

low logical level, then the state bit is not taken into 

account because the current virtual slice is different 

from the target virtual slice. Note that the counter is 

zeroed as soon as it reaches the maximum virtual slice 

number contained by the slice count register. 

Figure 3 shows the logical configuration of a 

physical slice necessary to implement the distribution 

phase of barrier synchronization according to the 

proposed method (distribution slice).  

The diagram in Fig. 3 is similar to that in Fig. 2, 

except that it contains d input invertors, a NAND gate 1 

and it has no inputs IN2 and IN3. The function of its 

elements and terminals is the same as that of the above 

diagram. The only difference is that negated barrier state 

signals are transferred and processed by this unit. The 

negate operator is performed in hardware by units 

1 21, 1, , 1dk k k− − −K  and 0,0, ,0K
 as follows. Unit 

1 21, 1, , 1dk k k− − −K
 directly transfers output OUT of its 

reduction slices (Fig. 2) to all inputs IN1.1, IN1.2, …, 

IN1.d of its distribution slices (Fig. 3), respectively. 

Unit 0,0, ,0K
, in turn, directly transfers output OUT of 

its distribution slices (Fig. 3) to all inputs IN1.1, IN1.2, 

…, IN1.d of its reduction slices (Fig. 2), respectively. 

This means that the reduction slices of unit 

1 2
1, 1, , 1

d
k k k− − −K

are connected to its distribution 

slices and the distribution slices of unit 0,0, ,0K
are 

connected to its reduction slices, respectively (i.e., the 

consecutive numbering of slices is strictly adhered to). 

Note that the reduction slice of Fig. 2 and the 

distribution slice of Fig. 3 may use the same slice count 

and target virtual slice registers, while the counters and 

the comparators must be separate because of the 

distributed clocking scheme adopted. 

To guarantee correct operation of the proposed 

barrier synchronization scheme, a suitable clocking 

mechanism is required. For this purpose we adopt the 

Distributed Circulating Wave clocking (DCW-clocking) 

technique described in paper (Zotov, 2010). However, 

the usage of the DCW-clocking “as is” isn’t possible 

because of the difference in the control network logic, 

topology and schemata. For this reason we build up an 

extended distributed clocking mechanism applicable to 

meshes of any dimension on the basis of the DCW-

clocking scheme. We call the new clocking mechanism 

the Bidirectional Distributed Wave clocking (BDW-

clocking). 

The basic idea of the BDW-clocking technique is 

that two trains of clock pulses are simultaneously 

injected into the control network at the opposite 

“corners” of the mesh 0,0, ,0K  and
1 21, 1, , 1dk k k− − −K

.The distribution of clock pulses in the barrier slices is 

synchronized by adding the pulses that arrive from the 

transmitter neighbors and issuing replica pulses to the 

receiving neighbors of the current unit. This guarantees 

synchronized virtual slice switching across the entire 

mesh. The distribution of clock pulses through the 

control network can be imagined as the propagation of 

two series of waves of timed pulses. The first series 

(forward pulse wave) is transferred from unit 0,0, ,0K
 

to unit 
1 21, 1, , 1dk k k− − −K

to control the reduction phase 

and the second series (backward pulse wave) propagates 

from unit 
1 21, 1, , 1dk k k− − −K

 to unit 0,0, ,0K
to control 

the distribution phase. The frequency of clock waves can 

be set by dividing the system clock frequency of 

processor units 0,0, ,0K
 and 

1 21, 1, , 1dk k k− − −K
. 

Figure 4 schematically illustrates the clock pulse 

distribution order for the control network of a 2D mesh 

system according to the BDW-clocking technique. To 

make the figure clear, separate units are indicated with 

squares and linkages between them are not shown. Note 

that the d-dimensional case can be understood in the 

same way. 

To implement the BDW-clocking technique, two 

clocking networks are superposed on the control 

network, one for the reduction phase and the other for the 

distribution phase. The reduction and distribution 

clocking networks are responsible for transferring 

forward and backward pulse waves, respectively (Fig. 4).  
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Both these networks consist of identical cells, each cell 
corresponding to a particular barrier unit.  

A  cell  of a  clocking  network is diagrammed in 

Fig. 5. The cell consists of a position D-type flip-flop and 

gates 1 and 2, an OR gate 1 and a univibrator UV 1. 

AND gate 1 has 1d +  inputs at all and its first d inputs 

are connected to the outputs of OR gates 1 of the 

transmitter neighbors. The output of OR gate 1 is wired 

to the corresponding inputs of AND gates 1 of the 

receiver neighbors. The univibrator’s output is connected 

to input INC of the local reduction and the distributed 

slices (Fig. 2 and 3). The input terminals of the position 

flip-flop and AND gate 2 are connected to the local 

processor. 

The position flip-flops remain clear across the 

entire mesh, except that of unit 0,0, ,0K
in the forward 

clocking network and that of unit
1 21, 1, , 1dk k k− − −K

 in 

the backward clocking network; these two flip-flops are 

set by unit position pulses received from the 

corresponding local processors. Such configuration of 

the position flip-flops in the forward clocking network 

guarantees that clock pulses are injected into this 

network by local processor 0,0, ,0K
 (AND gate 1 is 

blocked and gate 2 is open). Analogously, in the 

backward clocking network it is guaranteed that clock 

pulses are injected into this network by local processor 

1 21, 1, , 1dk k k− − −K
. At the same time, in the other cells 

 

0,0

1 21, 1k k− −

 
 

Fig. 4: The clock pulse distribution order for the control network of a 2D mesh system 

 

 
 

Fig. 5: The logical diagram of a cell of a clocking network (d-dimensional case) 
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Table 1: Comparison results 

Barrier method Flexibility Scalability Applicability  

The CM-5 barrier network 

(Thinking Machines, 1992) 

Low (barrier groups of powers of 2 in 

size are acceptable only) 

Poor: Physical reconfiguration of the barrier 

network is necessary when new processors are 
added to the system. 

Not applicable to 

mesh topologies 

Delgado-Kofuji’s distributed 

hardware synchronizer 
(Delgado and Kofuji, 1996) 

Low (barrier groups must be of 

rectangular shape) 

Fair: The number of concurrent barriers is the 

key limitation. 

Applicable to 2D 

meshes only 

The MDBS network 

(Ramakrishnan et al., 1999) 

Low (barrier groups must be mapped 

onto neighboring processors only) 

Good: The number of barriers in the system is a 

limiting factor. 

Applicable to 2D 

meshes only 
The BTM network (Moh  

et al., 2001) 

High (no limitations on barrier group 

configuration) 

Good: The number of barrier registers is a 

limiting factor. 

Applicable to 2D 

meshes only 

DVBSS (Zotov, 2010) High (no limitations on barrier group 
configuration) 

Fair: Hardwired wraparound connections 
between corner units of the mesh need 

reconnection when new units are added. 

Applicable to d-
dimensional 

meshes 

BVBSS (the proposed 
solution) 

High (no limitations on barrier group 
configuration) 

Good: The number of physical slices is a 
limiting factor. The local memory mapping 

scheme can alleviate the problem. 

Applicable to d-
dimensional 

meshes 

 
AND gate 2 remains blocked and the pulses issued by 
the local processors are ignored. Oppositely, in these 
cells AND gate 1 is maintained open, therefore the 
clock pulses from the transmitter neighbors are Added, 
the output of AND gate 1 eventually goes high and 
makes the univibrator UV produce a replica pulse. Thus 
the clock pulse wave is relayed to reach the next 
receiver neighbors in the forward/backward clocking 
network and affect the corresponding barrier units. This 
provides the clock pulse distribution order illustrated in 
Fig. 4. 
 

RESULTS AND DISCUSSION 
 

The results of comparison of the proposed method to 
well-known hardware-level barriers are summarized in 
Table 1. 

Table 1 shows that the proposed method is a more 
flexible alternative compared to the peers to barrier 
synchronize mesh-connected parallel systems of any 
dimension. 

Taking into account the hardware-level 
implementation of the proposed method, we have 
estimated the BVBSS hardware-level complexity. We 
calculated the minimum number of generic logic gates 
(AND, OR, NOR, NAND) necessary to build up the 
barrier synchronization hardware depending on d, m, p, 

1 2, , , dk k kK
. Table 2 summarizes some calculation 

results regarding the 2D case (d = 2). To simplify 
calculations (with no loss of generality) we assumed 
that k1 = k2 and m = p. Based on Table 2, one can see 
that hardware complexity limitations (VLSI limitations, 
in particular) are satisfied even in large meshes with 
high  m  and  p.  For  example,  in  a  32×32  mesh  with  
m = p = 32

 
the hardware-level complexity of a barrier 

unit will be as low as 26024 logic gates (including the 
complexity of the clocking networks). 

The synchronization latency of the proposed 
barrier synchronization method was evaluated through 
simulation. We conducted a series of simulation studies 

on a 32×32 mesh synthetic parallel system. The 
examined system was supposed to run a number of 
parallel    applications,   each   having    a   dynamically 

Table 2: Hardware-level complexity of a 2D control network 

m, p
 

k1 = k2 

-------------------------------------------------------------------- 

4 8 16 32 

4, 4 9792 39168 156672 626688 
8, 8 31872 127488 509952 2039808 

16, 16 112192 448768 1795072 7180288 

32, 32 416384 1665536 6662144 26648576

 

changing set of processes. We assumed the “one-

process-to-a-processor” allocation model during our 

experiments. During our simulation, barrier groups 

were instantiated and released randomly (the 

participants of barrier groups were picked at random). 

Synchronized groups were also randomly picked from 

the set of existing ones. Several synchronized groups 

were possible at the same time. The number of barrier 

episodes for each group was also taken at random. In 

our experiments, we measured the time required for a 

barrier state signal to travel from the last completed 

process of a barrier group to the last resumed 

participant of the same group. By summing up the 

startup and wakeup delays and average signal travel 

time, we calculated the synchronization latency of the 

proposed barrier mechanism. Resulted from our 

simulation, we found out that the synchronization 

latency stays as short as O (10) µsec depending on the 

number of instantiated barrier groups and slightly 

increasing with the virtual slice count p (subject to the 

average gate delay is 5 nsec). This is known to be not 

worse than the latency of known hardware barriers. 

 

CONCLUSION 

 
In the present study, we have presented a 

distributed hardware-level barrier synchronization 
method for d-dimensional mesh-connected parallel 
systems, the Bidirectional Virtual Bit-Slice 
Synchronizer (BVBSS). The proposed method is based 
upon a specific virtualization scheme making it possible 
to have p virtual control networks (slices) superposed 
on a physical one, while there may be up to m physical 
slices operating in parallel. Each virtual slice can be 
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dynamically allocated to any barrier group. Our method 
employs a specific wave clocking technique to switch 
between virtual slices in a parallel pipeline fashion, 
sending two series of pulse waves originating from two 
corner processors across the mesh to provide faster 
barrier operation. 

The BVBSS scheme has been shown to be more 

flexible than the existing hardware barriers; it accepts 

dynamically defined (possibly overlapping) barrier 

groups of arbitrary size and shape and noncontiguous 

group member allocation is possible. Our simulation 

study has proved the BVBSS to be as fast as the other 

hardware barrier synchronization models making it 

possible to synchronize arbitrary processes in O (10) 

µsec in a 32×32 mesh parallel system. 

 

NOMENCLATURE 

 

d : The number of dimensions in the mesh 

ik  
:
 

The width of an i
th

 dimension of the 

 mesh 

1 2, , , dx x xK

 
:
 

The coordinates of a unit along the 

 dimensions 

m : The number of physical barrier slices in 

 a unit 

p : The number of virtual slices in each 

 physical slice 

i, j : Indices 

fi 
: The current barrier group for virtual 

 slice i
 

( )ib f
 

:
 

The current barrier for barrier group 
i
f  

IN1.i, IN2 : The input terminals of the barrier unit 

OUT : The fan-out output of the barrier unit 
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