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Abstract: Filtering the noise present in ECG signals by adaptive signal processing is the aim of the study. Adaptive 

digital filters are difficult to pipeline due to the presence of long feedback loops, careful calibration of step size and 

depth of pipelining. DLMS filters are designed to reduce the adaptation delay in the existing method. However with 

the LMS algorithm, the resulting rate of convergence is typically an order of magnitude slower than the RLS 

algorithm. The exponentially weighted RLS algorithm which converges in the mean square sense in about 2M 

iterations, where M is the number of taps in the transversal filter. The fine-grain structure of RLS and RRLS 

adaptive filters are designed. Signal to Noise Ratio (SNR) analysis for these filters are performed on a preliminary 

basis with different structures. Pipelined implementation of these adaptive filters yield higher throughput, higher 

sample rates and low power designs. The filter structures are designed and simulated in MATLAB SIMULINK. 

These structures are used for the noise cancellation in ECG signals. 
 
Keywords: ECG (Electrocardiography) signals, fine-grain structure, pipelining, RLS (Recursive Least Square) 

filter, VLSI (Very Large Scale Integration) 

 
INTRODUCTION 

 
The Least Mean Square (LMS) adaptive filter is 

the most popular and most widely used adaptive filter, 

because it’s simple and also because of its satisfactory 

convergence performance (Meher and Park, 2013). The 

adaptive filters are mainly used in signal processing 

application. The filters should be designed by satisfying 

following constraints such as area, speed and power. 

Different structures for adaptive filters are designed 

based on their application. LMS algorithms are simpler 

in evaluation process, but they attain lower quality in 

the cancellation of disturbing signals. Contrary, RLS 

algorithms achieve higher quality in the disturbing 

signal cancellation, but they have large numerical 

claims for RLS filter coefficient evaluation (Oravec et 

al., 2008). 
 One of the main problem in biomedical data 

processing like electrocardiography is the separation of 
the signal from noises caused by power line 
interference, external electromagnetic fields, random 
body movements and respiration. The RLS algorithms 
are known to pursue fast convergence even when the 
Eigen value spread of the input signal correlation 
matrix is large. These algorithms have excellent 
performance when working in time-varying 
environments (Chandrakar and Kowar, 2012). The 
throughput is one of parameter that should be increased 
but it reduces   the   rate   of   convergence  by using the 
available  PEs  (VijayaLakshmi  and  Raghuram, 2012).  

Parallel and sequential LMS-based adaptive FIR filters  
are  one of the methods that are applied to remove 
power-line interference from ECG signal and white 
noise from speech signal. The parallel architectures is 
well suited for small size filters, while the sequential 
one is more appropriate for a large-size filter 
(Mohammed and Hassan, 2011). Recently (Bhotto and 
Antoniou, 2011) presented the robust recursive least 
square adaptive filter algorithm that uses prior error 
dependent weights. The robust RLS adaptive-filtering 
algorithm that yields an excellent solution of the 
weighted least squares optimization problem. Fine grain 
pipelining is one of the technique of decomposing the 
computation intensive multipliers into small segments. 
In this method a delay unit is inserted in the small 
segment of the multiplier so that the critical path and 
the execution time can be reduced (Jaya and 
Madhumita, 2010). The simulation result shows that the 
performance of robust recursive least square algorithm 
is better than the previous counterpart. 
 

MATERIALS AND METHODS 
 

An adaptive filter is a filter that self-adjusts its 
transfer function according to an optimization algorithm 
driven by an error signal. Because of the complexity of 
the optimization algorithms, most adaptive filters are 
digital filters. The block diagram, shown in the 
following Fig. 1, serves as an adaptive filter for noise 
cancellation application by using Least Mean Square 
(LMS) and Recursive Least Square (RLS) algorithms.



 

 

Res. J. App. Sci. Eng. Technol., 11(5): 501-506, 2015 

 

502 

 
 

Fig. 1: Structure of adaptive noise cancellation 

 

The idea behind the block diagram is that a variable 

filter extracts an estimate of the desired signal. The 

adaptive filters are used for various application such as 

adaptive identification, adaptive inverse, adaptive 

prediction and adaptive noise cancellation. This study 

discuss on the noise cancellation of ECG signal.  

 

Recursive least square algorithm: The Recursive 

Least Squares (RLS) algorithm is one of the most well-

known algorithms used in adaptive filter. When new 

samples of the incoming signals are received at every 

iteration, the solution for the least-squares problem can 

be computed in recursive form resulting in the recursive 

least-squares algorithm. The Recursive Least Squares 

(RLS) algorithms attempt to minimize the cost 

function: 

  

ξ �n� = � λ
��	e��  �k��	
�                               (1) 

 

where, k = 1 is the time at which the RLS algorithm 

commences and λ is a small positive constant very 

close to, but smaller than 1. With values of λ<1 more 

importance is given to the most recent error estimates 

and thus the more recent input samples, this results in a 

scheme that places more emphasis on recent samples of 

observed data and tends to forget the past. 

The RLS algorithm is shown below: 

 

Step 1: Initialize Weights: 

  

w �0� = 0                                                           (2) 

 

Step 2: Initialize inverse correlation matrix: 

  

P �0� = δ
��I                                                         (3) 

 

Step 3: Compute gain vector: 

 

π �n� = P �n − 1� u �n�                                       (4) 

k �n� = π���
λ������π���                                                (5) 

 

Step 4: Compute error: 

 

e �n� = d �n� − w� �n − 1� u �n�                       (6) 

 

Step 5: Compute inverse correlation matrix: 

  

P �n� = λ
��P �n − 1� − λ

��k �n� u� �n� P �n − 1�   (7) 

 

Step 6: Update the coefficients: 

  

w �n� = w �n − 1� + k �n� e �n�                       (8) 

 

Robust recursive least square algorithm: The Robust 

Recursive Least-Squares (RRLS) adaptive filtering 

algorithm that utilizes a priori error-dependent weights 

and the Robustness against predominant noise is 

accomplished by choosing the weights on the 

fundamental of the L1 norms of the cross correlation 

vector and the input-signal autocorrelation matrix. This 

algorithm also uses a variable forgetting factor that 

cause fast tracking. This algorithm is robust with 

respect to noise as well as long bursts of noise in the 

sense that it converges back to the steady state much 

quicker than during the initial convergence. This 

algorithm also tracks sudden system agitation in non-

stationary environment. The RRLS algorithm is shown 

below. 

Given dk and Xk, Choose P, λf, S0 = ε
-1

I and compute: 

 

e	 = d	 − w	��� x	                                                (9) 

 

t	 = S	��x	                                                        (10) 

  

τ	 = x	�t	                                                            (11) 

 

=τ 
^ λ 

δ 
+ τ	                                                         (12) 

 

=� 
^ �

 τ 
^ t	                                                             (13) 

 

S	 = �
λ 

"S	�� − ∗� 
^ t	�$                           (14) 

 

w	 = w	�� + e	  � 
^                                              (15) 

 

For stationary environment, compute: 

 

λ	 = λ%                                                        (16) 

 

||x	||� = ||x	��||� + |x	| − |x	�'|                   (17) 

 

δ	 = min *0.1, �
||- ||.|/ |0                           (18) 
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For non-stationary environment, compute: 

 

g	 = 2e	�+∈, g	��� �1,1: P − 1�5�
             (19) 

 

C = median �g	�                                          (20) 

 

σ�,	� = βσ�,	��� + �1 − β� min �σ�,	��� , C�          (21) 

 

σ�,	� = εσ�,	��� + �1 − ε� C                                 (22) 

 

if 9min� g	� > 4σ�,	 

 

λ	 = max <0.1, min �λ%, θ., τ 
θ=, �θ., �θ., τ 

�>            (23)   

 

δ	 = 1 − λ	                                                        (24) 

 

else δ	 = min �1, �
||- ||.|/ |�                               

 
The Electrocardiogram (ECG) is a time varying 

signal reflecting the ionic current flow which causes the 
cardiac fibers to contrast and subsequently relax. Based 
on the electrodes placed on the skin the electrical 
activity of the heart is measured.  
 
Power line interference noise: Power line interference 
consists of 60/50 Hz pickup and harmonics that can be 
modeled as sinusoids and combination of sinusoids. 
According to Thakor and Zhu (2001), the frequency 
content of this kind of noise is 60/50 Hz with harmonics 
and the amplitude is 50% of peak-to-peak ECG 
amplitude. 

 

Electrode contact noise: Improper contact of the 

electrodes interrupts for a short period the connection 

between    patient    and    measuring    system   creating  
 

electrode contact noise. The duration of noise signal is 

1 sec and amplitude is maximum recorded output with 

frequency of 60 Hz. 

 

Motion artifact: The cause of motion artifact is 

assumed to be vibrations or movements of the subject. 

The duration of this kind of noise signal is 100-500 

msec with amplitude of 500% peak to peak ECG 

amplitude. 

 

Muscle contractions: This type of noise generates 

millivolt level artifactual potentials. The standard 

deviation of this kind of noise is 10% of peak to peak 

ECG amplitude with duration of 50 msec and the 

frequency content being dc to 10 KHz.  

 

Baseline wander: Low frequency wander can be 

caused by respiration or patient movement. This kind of 

noise causes problems in the detection of peaks. Due to 

wander T peak would be higher than R peak and it 

might be detected as R peak instead. Amplitude 

variation is 15% of peak to peak ECG amplitude and 

baseline variation is 15% of ECG amplitude at 0.15 to 

0.3 Hz. 

 

IMPLEMENTATION OF ADAPTIVE FILTERS 

 

The basic Fourier transform theory states that 

linear convolution of two sequences in time domain is 

the same as the multiplication of two corresponding 

spectral sequence in the frequency domain. Thus 

filtering is an essence of multiplication of signal 

spectrum by the frequency domain impulse of the filter. 

Hence according to the equation of the FIR filter, we 

can write the output response as given in equation: 

  

y �n� = B h �k� x �n − k�D
E
F                            (25) 

 

 
 

Fig. 2: Fine-grain pipeline structure 
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Fig. 3: Eight tap RLS adaptive filter fine-grain structure in SIMULINK 

 

 
 

Fig. 4: Eight tap RRLS adaptive filter fine-grain structure in SIMULINK 

 

According to the above equation one possible 

implementation structure of FIR filter can be designed. 

This structure is called direct form1. Adaptive filters 

consists of two process, filtering and updating. The 

non-adaptive filters have fixed coefficients but in 

adaptive filters the coefficients are initially zero and 

updated in every iteration with the help of error and 

gain functions.  

We can transform a given system into a different 

network structure while maintaining the same system 

function. One of such transformation is the 

transposition technique. In this theorem we reverse the 

direction of all the branches, at the same time we 

interchange input and output. If we apply transposition 

theorem to the direct form-1 structure of FIR filter we 

can obtain the broad cast structure.  

 

Fine-grain structure: There are many pipelining 

techniques available and used in many filter structures. 

Pipelined systolic architectures are used in different 

adaptive filters because of its uniform and regular 

structure but this structure is not applicable for standard 

RLS noise cancellation filter. Fine grain pipelining is a 

technique of decomposing the computation intensive 

multipliers into small segments. In this method a delay 

unit is inserted in the small segment of the multiplier so 

that the critical path and the execution time can be 

reduced. The fine grain structure is shown in the Fig. 2. 

Due to the approximation of the multiplier unit there is 

a deviation of the output response.  

The adaptive filters with fine-grain pipeline 

structure for both RLS and RRLS using MATLAB 

SIMULINK are shown in Fig. 3 and 4 respectively. 

 

RESULTS AND DISCUSSION 

 

To show that RRLS algorithm is really effective in 

clinical situations, the method has been validated using 
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Fig. 5: The first waveform shows the ECG signal collected from database, the second waveform shows the 60 HZ PLI noise, the 

third waveform shows the ECG signal added with PLI noise and the fourth waveform shows the de-noised signal for the 

fine-grain pipeline RLS structure 

 

 
 

Fig. 6: The first waveform shows the ECG signal collected from database, the second waveform shows the 60 HZ PLI noise, the 

third waveform shows the ECG signal added with PLI noise and the fourth waveform shows the de-noised signal for the 

fine-grain pipeline RRLS structure 

 
Table 1: Following table shows the result of RLS 

Data Algorithm 

SNR before filtering 

(dbms) 

SNR after filtering (dbms) 

------------------------------------------------------------------------------------- 

Without pipelining With pipelining SNR improvement 

100 RLS 32.01 38.63 38.77 0.14 

105 RLS 31.90 38.15 38.30 0.15 

108 RLS 32.08 39.02 39.15 0.13 

228 RLS 32.23 39.85 39.97 0.12 

 

Table 2: Following table shows the result of RRLS 

Data Algorithm 

SNR before filtering 

(dbms) 

SNR after filtering (dbms) 

------------------------------------------------------------------------------------- 

Without pipelining With pipelining SNR improvement 

100 RRLS 32.01 38.80 38.89 0.09 
105 RRLS 31.90 38.32 38.33 0.03 

108 RRLS 32.08 39.18 39.19 0.01 

228 RRLS 32.23 40.01 40.03 0.02 
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several ECG recordings with a wide variety of wave 
morphologies from MIT-BIH (Rey Vega et al., 2009) 
arrhythmia database (MIT-BIH physioNet database). 
Power line interference may severely pervert a bio 
medical recording. Notch filters and adaptive cancellers 
have been evoked to inhibit this interference. 

An improved adaptive canceller for the reduction 
of  the  underlying  power  line  interference component 
and harmonics in Electrocardiogram (ECG) recordings 
is designed. To demonstrate Power Line Interference 
(PLI) cancellation chosen MIT-BIH record number 
100. The input to the filter is ECG signal equivalents to 
the data 100 corrupted with synthetic PLI with 
amplitude 1 mv and frequency 60 Hz, sampled at 200 
Hz. The reference signal is synthesized PLI, the output 
of the filter is retrieved signal. For all the figures 
number of samples is taken on x-axis and amplitude on 
y-axis, unless stated. Figure 5 and 6 shows the 
simulation results of RLS and RRLS filters 
respectively. 

Table 1 shows the results of RLS filter. The 
comparison of SNR for different database with respect 
to pipelined and non-pipelined structures are tabulated. 
Table 2 shows the SNR comparison for RRLS filter 
structure. From the table, analysis says that the 
pipelined structure has better SNR for different ECG 
databases. The RLS structure has good SNR 
improvement for pipelined structure. In the case of 
RRLS there is not much improvement in the SNR for 
pipelined structure but it has good SNR improvement 
compared to RLS structure. 

 
CONCLUSION 

 
In this study pipelined structure of adaptive digital 

filter is designed for both RLS and RRLS adaptive 
algorithms. The simulation results shows that the SNR 
of the ECG signals are improved for pipelined 
structures. Pipelining also increases the speed of the 
adaptation process. When comparing the RLS 
algorithm, RRLS algorithm is better for noise 
cancellation of ECG signals. 
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