
Research Journal of Applied Sciences, Engineering and Technology 11(2): 229-234, 2015

DOI: 10.19026/rjaset.11.1711

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: May 20, 2015 Accepted: June 19, 2015 Published: September 15, 2015

Corresponding Author: M.A. Remli, Department of Software Engineering, Universiti Tekonologi Malaysia, 81310 Johor

Bahru, Johor, Malaysia
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

229

Research Article
Service Composition Optimization Using Differential Evolution and

Opposition-based Learning

M.A. Remli, S. Deris, M. Jamous, M.S. Mohamad and A. Abdullah
Department of Software Engineering, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor

Bahru, Johor, Malaysia

Abstract: The numbers of web services are increasing rapidly over the last decades. One of the most interesting
challenges in using web services is the usage of service composition that allows users to select and invoke
composite services. In addition, the characteristic of each service is distinguished based on the quality of service
(QoS). QoS is utilized in optimizing decisive factors such as cost or response time that is required by the user in the
runtime system. Thus, QoS and service composition problem can be modeled as an optimization problem. In this
study, differential evolution and opposition-based learning optimization methods have been proposed to obtain the
optimal solution from candidate services. The results show that the proposed method converges faster than others.
Therefore, the method is capable to select better composite services in short time.

Keywords: Differential evolution, opposition-based learning, quality of services, service optimization, web service

composition

INTRODUCTION

Web services requester faces challenging tasks

when they are looking for a desired web service and at
the same time there is no single service that satisfies
their request. This challenge can be overcome by
service composition, which involves the combination of
a number of services to produce complex business
processes. Service composition can give benefits and
added values in software landscape for numerous areas
such as travel agents, government services and
biological researches. However, with the increasing
number of services, it is obviously different from each
service with regard to quality factors such as response
time, execution time, cost, reliability and security
(Alrifai and Risse, 2010). Therefore, web service
composition problem has led to the determination of
optimal solutions because these services should be
chosen based on Quality of Service (QoS) (Jula et al.,
2014; Mardukhi et al., 2013).

QoS attributes in the web services, including cost,
time and quality, are non-functional properties attached
in the service description. The properties can be
employed to drive the selection of candidate services
and later can be invoked when providers are exposing
equivalent web services through compatible interfaces
(Siadat et al., 2013). For example, the user would
determine the criteria that they will use to invoke
services; the cheaper services, services with fast
response time, or services with the highest reliability.

Fast composition process is obviously important for
QoS services composition. For instance, a user does not
want to wait long when they want to use travel booking
services. The user will search for hotel and ticket
services in order to find cheaper services and long
waiting time in the list of candidate services is not
acceptable. The situation is similar for biological
research, where searching for a huge list of bio-related
services can take very long time due to the large
amount of bio-related web services that are currently
published. Subsequently, this problem is described as
“given a set of composite services that include service
orchestration’s features (referred to as abstract services)
and concrete services, how do we obtain an optimal
combination of composite services that satisfy QoS
constraints in short time”.

Figure 1 (www.taverna.org.uk) depicts an example
of service composition in biological research,
specifically for a case study in gene-pathway
information retrieval. This process is also known as
workflow composition. A composite service can be
described as a process that involves the execution of
several activities. For each activity that is assigned as
abstract services (S1-S6), several concrete services
exist. Each concrete service has different QoS
properties; response time (t), reliability (r), availability
(a) and cost (c). The QoS of the overall composite
services is obtained by aggregating the QoS of the
component services as shown in Fig. 2. Given m
abstract services and n concrete services, there are n

m

Res. J. App

Fig. 1: A gene-pathway abstract retrieval process

possibilities. The search space is discrete since each

abstract service needs to choose one concrete service

and any combination is possible (Ngoko

The solution should be found at runtime. However,

finding the solution from this problem is NP

Nevertheless, the problem can be tackled using various

optimization algorithms and methods, which are

discussed briefly in the next section. Ther

selection is needed in the runtime process to invoke

web service composition.

LITERATURE REVIEW

Considering the large amount of web services that

exist in the Universal Description Discovery and

Integration (UDDI) registry, efficient tools ar

to search services accurately and fast. Furthermore,

several interfaces and tools are available for

service discovery process. However, there is still

of method for searching optimal candidates for service

composition. The structure of composite services is

described by abstract and concrete services and the

method must be capable of finding the best combination

of concrete services at runtime. In QoS web service

composition problem, determining the number of

abstract and concrete services is fundamental.

properties attached in the optimization method are

crucial when there is a large number of possible

candidates’ services. Thus, many optimization

algorithms have been developed using various

strategies to optimize QoS service compositi

Genetic Algorithm (GA), Differential Evolution (DE)

and Particle Swarm Optimization (PSO).

Several works have reported that using

evolutionary algorithm such as GA produces promising

results. A prominent work from Canfora applied GA to

optimize service composition based on QoS constraints.

The author stated that GA outperformed Integer

App. Sci. Eng. Technol., 11(2): 229-234, 2015

230

way abstract retrieval process

possibilities. The search space is discrete since each

abstract service needs to choose one concrete service

and any combination is possible (Ngoko et al., 2013).

The solution should be found at runtime. However,

this problem is NP-hard.

Nevertheless, the problem can be tackled using various

optimization algorithms and methods, which are

discussed briefly in the next section. Therefore, fast

selection is needed in the runtime process to invoke

LITERATURE REVIEW

Considering the large amount of web services that

exist in the Universal Description Discovery and

Integration (UDDI) registry, efficient tools are needed

to search services accurately and fast. Furthermore,

several interfaces and tools are available for web

service discovery process. However, there is still lack

for searching optimal candidates for service

mposite services is

described by abstract and concrete services and the

method must be capable of finding the best combination

of concrete services at runtime. In QoS web service

composition problem, determining the number of

fundamental. QoS

properties attached in the optimization method are

crucial when there is a large number of possible

candidates’ services. Thus, many optimization

algorithms have been developed using various

strategies to optimize QoS service composition, such as

Genetic Algorithm (GA), Differential Evolution (DE)

and Particle Swarm Optimization (PSO).

Several works have reported that using

algorithm such as GA produces promising

results. A prominent work from Canfora applied GA to

e service composition based on QoS constraints.

The author stated that GA outperformed Integer

Programming (IP) in terms of computational time when

the number of concrete services is large.

proposed a GA-basedQoS-aware service composition

that overcomes both non-functional and functional

levels using semantic web and Description Logic

reasoning (DL). The author stated that the work

converged faster than the work by Canfora and has

better fitness values. Besides GA, other works have

used DE, which have similar strategy to GA, except for

mutation and crossover operator. For instance, Florin

reported that his proposed approach,

to converge faster than GA and other DE variants. The

author proposed an approach that used DE and integer

genome encoding to map abstract and concrete services

intogenome. The strategy used in his work is

DE/best/1/bin, with scaling factor,

crossover constant, Cr = 0.9. For swarm intelligence

method, Liou proposed an improved PSO that has

better accuracy in finding the optimal solution

compared to the original PSO. However, his work could

not be compared with GA, DE or

evolutionary algorithms due to the different

environment and platform.
In fact, GA is the most preferred approach to solve

this problem based on previous works. GA is the best
approach for large search spaces (complex composite
services with numerous abstract and concrete services).
However, QOS optimization is usually perfor
runtime, where a fast algorithm is needed and GA may
be slow for this optimization. Previous studies
been conducted and showed that for some general
optimization problems, the algorithm based on DE
performed significantly better than GA. The fo
section discusses briefly on the applicability of DE in
service composition optimization. Later, the
Opposition-Based Learning (OBL) method is presented,
as well as how OBL can be combined with DE to
improve the convergence speed of the original DE
web service composition problem.

Programming (IP) in terms of computational time when

the number of concrete services is large. Lecue

aware service composition

functional and functional

web and Description Logic

reasoning (DL). The author stated that the work

converged faster than the work by Canfora and has

better fitness values. Besides GA, other works have

strategy to GA, except for

mutation and crossover operator. For instance, Florin

reported that his proposed approach, LongDE is capable

to converge faster than GA and other DE variants. The

that used DE and integer

me encoding to map abstract and concrete services

. The strategy used in his work is

factor, F = 0.75 and

= 0.9. For swarm intelligence

method, Liou proposed an improved PSO that has

acy in finding the optimal solution

compared to the original PSO. However, his work could

not be compared with GA, DE or other types of

evolutionary algorithms due to the different

In fact, GA is the most preferred approach to solve
this problem based on previous works. GA is the best
approach for large search spaces (complex composite
services with numerous abstract and concrete services).

is usually performed at
runtime, where a fast algorithm is needed and GA may
be slow for this optimization. Previous studies have
been conducted and showed that for some general
optimization problems, the algorithm based on DE
performed significantly better than GA. The following

on the applicability of DE in
service composition optimization. Later, the

Learning (OBL) method is presented,
as well as how OBL can be combined with DE to
improve the convergence speed of the original DE in

Res. J. App. Sci. Eng. Technol., 11(2): 229-234, 2015

231

Fig. 2: Overview of the proposed method

DIFFERENTIAL EVOLUTION FOR SERVICES

COMPOSITION

Differential Evolution (DE) is a family of

evolutionary algorithm, which is similar to GA (Storn

and Price, 1997). DE is well applied in optimization

problems because of its robustness, effectiveness and

simple to implement. In previous works, many authors

have reported that DE outperformed many optimization

methods in terms of convergence speed and robustness

Res. J. App. Sci. Eng. Technol., 11(2): 229-234, 2015

232

(Das and Suganthan, 2010). Basically, DE starts by

initially generating random populations (candidate

solutions) if no prior knowledge about the solution

space is available. Let assume that ���,��� = 1,2, . . ��
are the vector of solution in generation G, in which

�represents the population size. The next generation
of population, called mutation vector, is calculated by

adding weighted difference of two randomly selected

vectors to a third randomly selected vector as follows:

��,� = ���,� + �(���,� − ���,�) (1)

where, � = {1,2, … �} and �1, �2 and �3 are different
integers randomly selected from {i}. Then, the

crossover operator is applied to produce a trial vector

from the mutant vector and the target vector. This

process is iterated until the best solution, either from the

trial or target vector, is chosen. The most commonly

used strategy of DE is DE/best/1/bin. However, similar

to other population-based algorithm, the major

drawback of DE occurs in long computation time

because of its nature in terms of evolution and

stochastic. Some methods that are capable of increasing

convergence speed by adding extra rules in DE for

service composition problems are explained in the next

section.

Opposition-based learning: The original idea of

Opposition-Based Learning (OBL) is to estimate the

consideration of solution and the opposite solution

simultaneously (Rahnamayan et al., 2008). The results

of both estimate and opposite estimation solution are

compared to obtain a better candidate solution. By

using the opposite candidate solution, the global

optimum can be reached in shorter time than the

random candidate solution. In other words, the

utilization of OBL during population initialization and

for a new population during the evolutionary process

can speed up convergence time of DE algorithms. In the

application of a higher dimension problem, this

definition can be extended as follows. Let ! =
("�, "�, . . , "#) be a point in dimensional space D, where

"�, "�, . . , "# ∈ % and "� ∈ ['� , (�]∀�∈ {1,2, … , +}. The
opposite point !, = ("-�, "-�, . . , "-#) is defined by:

"-� = '� + (� − "� (2)

Opposition-based optimization: Let ! =
("�, "�, . . , "#) is a candidate solution and .(.) is a
fitness function to measure the candidate’s fitness.

Therefore, if the opposite candidate solution is better

than the current candidate solution .(!,) ≥ .(!) with
!, = ("-�, "-�, . . , "-#), then point P is replaced with !,;
otherwise, the process is continued with P (Xu et al.,

2014).

Table 1: QoS aggregation

QoS Properties Sequence Switch Loop Flow

Time (0)
1 0(2�)
3

�4�
 1 56�

7

�4�
∗ 0(2�)

9'"{0(2�)�∈{�…}} : ∗ 0(2)

Cost (;)
1 ;(2�)
3

�4�
 1 56�

7

�4�
∗ ;(2�)

: ∗ ;(2)
1 ;(2�)

�4�

Availability (<)
= <(2�)

3

�4�
 1 56�

7

�4�
∗ <(2�)

<(2)>
= <(2�)

�4�

Reliability (%)
= %(2�)

3

�4�
 1 56�

7

�4�
∗ %(2�)

%(2)>
= %(2�)

�4�

PROPOSED METHOD

In DE, a suitable genome must be encoded based

on service composition problem to enable the evolution

strategy to search for an optimal solution. In this study,

a genome is encoded as an integer array. Each integer

array contains a number of items that represent abstract

services. For each abstract service, it contains an index

to the array of the concrete services. Each gene encoded

in concrete services in CSi realizes the abstract service

Si. The real value stored in the gene represents the

preference for selecting concrete service, which is

generated randomly in the interval [0, 1] (Canfora et al.,

2005). For example, if the service composition

workflow consists of 2 abstract services, S1 and S2 and

for S1, there are 3 alternative concrete services, where

S2 has 2 alternative services, then the concrete services

will be chosen based on the greater value of the

corresponding concrete services. These preference

values are updated during the evolutionary processes in

DE. The fitness is assigned to a composite service

function of its QoS attributes by using QoS aggregation

as shown in Table 1. The aggregation depends on the

composite service architecture, including each of the

control construct.

To evaluate the quality of each potential solution,

the aggregate objective function is considered in the

following equation:

�(?) = @�. % + @�. < + AB
C + AD

E (3)

where, wi are the weights that correspond to the

importance of each QoS property to the user and R, A,

T, C are the aggregated QoS values for the services

workflow (Pop et al., 2011a). The original DE was used

as the parent algorithm and the OBL studied in this

study was hybridized into two parts of DE; opposition

initialization and opposition jumping. Firstly, OBL for

initializing population was performed based on the

preference of services, which produced opposite

population, !,. Random population ! and opposite
population !, were compared to select a better

population that is close to fitness value. Then,

Res. J. App. Sci. Eng. Technol., 11(2): 229-234, 2015

233

Fig. 3: Evolution of fitness with m = 10 and n = 20

tempPopulation was assigned and mutated by adding

weighted difference factor F from 3 vectors as shown in

formula (1). The mutation and crossover step are

classical DE/rand/1/bin. Then, by applying the similar

approach, the next evolutionary process could be forced

to jump to a new candidate solution (which is fitter than

the current one) by performing opposition jumping.

Opposition jumping calculated the opposite of each

variable based on the minimum (9F�G
) and maximum

9<�G
) values of variable in the current population,

H!�,G = 9F�G
 + 9<�G

 − !�,G where � = 1,2, . . � and

I = 1,2, … +. For the stopping criteria, a maximum of

500 generation was defined, in which no fitness

improvement was observed. Figure 2 depicts the overall

process of the proposed method.

NUMERICAL EXPERIMENTS AND

EVALUATION

The proposed method has been implemented and

compared with the existing method based on the DE

that applies discrete optimization approach, including

TruncDE, XueDE, LongDE and original DE (Pop et al.,

2011b). In our proposed method, OBLDE was set with

the following parameters: scaling factor, F = 0.98 and

crossover constant, Cr = 0.9. The strategy used for

OBLDE was DE/best/1/bin. The population was set to

100, which involved a maximum of 500 generations.

The experiments were run 10 times and the result was

averaged. Figure 3 illustrates the result obtained with

business workflow consists of 10 abstract services m

and 20 concrete services n. Based on the result, all

methods converged within 200 generations, with

OBLDE was close to the global maximum. Figure 4

presents a more complex service workflow involving

40 abstract services and 40 concrete services. The result

is similar with the previous result. Therefore, the

proposed OBLDE converges faster than other methods.

Moreover, CPU user time was compared with

similaralgorithms such as original DE, GA and IP. The

number of concrete services was set to 25 and the

experiments were executed 10 times and the average

values were computed as shown in Fig. 5. The

Fig. 4: Evolution of fitness with m = 40 and n = 40

Fig. 5: Comparison of performance with GA, IP and original

DE

experiments were performed on a 2.40 GHz Intel(R)

Core 2 Duo computer with 1.5 GB, Windows 7 and

JRE7. Other methods like IP performed well when the

concrete service was small. Substantially, GA, DE and

OBLDE demonstrated similar performance. OBLDE

requires slightly less computation time due to better

population of candidate services, which is utilized with

OBL before and during the optimization process.

CONCLUSION AND

RECOMMENDATIONS

This study proposes a new method for optimizing

web service composition using Differential Evolution

(DE) and Opposition-Based Learning (OBL) based on

QoS properties. The method used DE as the parent

algorithm and OBL to improve better candidate

services during the initializing population and

evolutionary processes. Prior to initialization, the

genome is encoded using integer array that stores

values of concrete and abstract services. The values are

considered as service preference values that lead to the

choice of better concrete services in the optimization

algorithm. The opposite numbers of service preference

value are obtained and compared with randomly

generate values. Thus, better service value was selected

and served as the initial population. The similar

approach, called generation jumping, was used to force

new and better candidates’ services in the iterative

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

0 100 200 300 400 500

truncde xuede
longde de
oblde

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

0 100 200 300 400 500

truncde xuede
longde de
oblde

0

100

200

300

400

500

600

700

5 10 15 20 25

m
se
c.
 (
av
g
.)

of concrete services per abstract

service

GA
IP
DE
OBLDE

Res. J. App. Sci. Eng. Technol., 11(2): 229-234, 2015

234

processes. The parameters for the proposed method

were set to scaling factor, F = 0.98 and crossover

constant, Cr = 0.9. The proposed method was compared

with several existing optimization methods. The result

shows that the proposed method is capable to find

better service to be used for service composition in fast

selection compared to other methods. For future work,

the researchers intend to simulate more detailed real

scenario of service composition using travel agent

system and bioinformatics workflow application.

ACKNOWLEDGMENT

This study is partially supported by Universiti

Teknologi Malaysia with Research University Grant

(GUP), Vot Number 04H34 and 4S102. The authors

also gratefully acknowledge helpful comments and

suggestions of the reviewers, which have improved the

presentation of this study.

REFERENCES

Alrifai, M. and T. Risse, 2010. Efficient QoS-aware

service composition. Ws. So. Ag. Te., 3: 75-87.

Canfora, G., M.D. Penta, R. Esposito and M.L. Villani,

2005. An approach for QoS-aware service

composition based on genetic algorithms.

Proceedings of the 7th Annual Conference on

Genetic and Evolutionary Computation

(GECCO'05), pp: 1069-1075.

Das, S. and P.N. Suganthan, 2010. Differential

evolution: A survey of the state-of-the-art. IEEE T.

Evolut. Comput., 15(1): 4-31.

Jula, A., E. Sundararajan and Z. Othman, 2014. Cloud

computing service composition: A systematic

literature review. Expert Syst. Appl., 41(8):

3809-3824.

Mardukhi, F., N. NematBakhsh, K. Zamanifar and A.

Barati, 2013. QoS decomposition for service

composition using genetic algorithm. Appl. Soft

Comput., 13(7): 3409-3421.

Ngoko, Y., A. Goldman and D. Milojicic, 2013. Service

selection in web service compositions optimizing

energy consumption and service response time. J.

Internet Serv. Appl., 4: 19.

Pop, F.C., D. Pallez, M. Cremene, A. Tettamanzi, M.

Suciu and M. Vaida, 2011a. QoS-based service

optimization using differential evolution.

Proceeding of the 13th Annual Conference on

Genetic and Evolutionary Computation

(GECCO’11), pp: 1891-1898.

Pop, F.C., M. Cremene, M.F. Vaida and A. Serbanescu,

2011b. Medical services optimization using

differential evolution. Proceeding of International

Conference on Advancements of Medicine and

Health Care through Technology, 36: 72-77.

Rahnamayan, S., H.R. Tizhoosh and M.M.A. Salama,

2008. Opposition-based differential evolution.

IEEE T. Evolut. Comput., 12(1): 64-79.

Siadat, S.H., A.M. Ferreira and P. Milano, 2013.

Performance analysis of QoS-based web service

selection through integer programming, World

Appl. Sci. J., 28(4): 463-472.

Storn, R. and K. Price, 1997. Differential evolution: A

simple and efficient heuristic for global

optimization over continuous spaces. J. Global

Optim., 11: 341-359.

Xu, Q., L. Wang, N. Wang, X. Hei and L. Zhao, 2014.

A review of opposition-based learning from 2005

to 2012. Eng. Appl. Artif. Intel., 29: 1-12.

