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Abstract: Recently, “spatial data bases have been extensively adopted in the recent decade and various methods 
have been presented to store, browse, search and retrieve spatial objects”. In this study, a method is plotted for 
retrieving nearest neighbors from spatial data indexed by R+ tree. The approach uses a reduced R+ tree for the 
purpose of representing the spatial data. Initially the spatial data is selected and R+ tree is constructed accordingly. 
Then a function called joining nodes is applied to reduce the number of nodes by combining the half-filled nodes to 
form completely filled. The idea behind reducing the nodes is to perform search and retrieval quickly and efficiently. 
The reduced R+ tree is then processed with KNN query algorithm to fetch the nearest neighbors to a point query. 
The basic procedures of KNN algorithm are used in the proposed approach for retrieving the nearest neighbors. The 
proposed approach is evaluated for its performance with spatial data and results are plotted in the experimental 
analysis section. The experimental results showed that the proposed approach is remarkably up a head than the 
conventional methods. The maximum time required to index the 1000 data points by the R+ tree is 10324 ms. The 
number of nodes possessed by reduced R+ tree is also less for 1000 data points as compared to the conventional R+ 
tree algorithm. 
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INTRODUCTION 

 
The Spatial Data Base System (SDBS) (Corral and 

Almedros-Jimenez, 2007) has recently surfaced as a 
database system which furnishes spatial data types in 
its data version and query language and possesses 
spatial data types in its functioning, meting out spatial 
indexing and proficient spatial query processing among 
others (Shekhar and Chawla, 2003). The onset of last 
decade has eagerly witnessed the launching and 
execution of mega spatial databases and various 
techniques (Lin, 2010;  Chong  et al., 2003; Kim et al., 
2002; Jagadish et al., 2005; Taniar and Rahayu, 2003) 
with a view to amass, scan, probe and reclaim spatial 
objects. A superb spatial database is endowed with the 
qualities of sustaining and bringing together both 
explicit and implicit data of spatial objects. The explicit 
data of an object contains its locality, scope, direction, 
dimension and bounds. Implicit data, on the other hand, 
encompasses the spatial association between discrete 
objects, the allocation and density of objects in a 
specific area and the exposure for certain objects. The 
spatial objects are generally classified by Lin (2010) 
and Gaede and Gunther (1998) in d-dimensional 
Euclidean space. In heterogeneous spatial database 

environs of modern Geographical Information Systems 
(GIS), data repositories collected and integrated from 
different spatial data origins more habitually coexist. 
Data integration surfaces as the vital subject to be 
faced-off (Cuzzocrea and Nucita, 2011; Butenuth et al., 
2007) at present, which is extensively studies in the 
structure of spatial databases (Cuzzocrea and Nucita, 
2011; Calì et al., 2003; Ives et al., 1999). Conservative 
spatial databases like those basically self-governing 
GIS, unrefined data files amassing geographical data 
and GIS-linked Web pages are outstanding examples of 
these sources. In diverse backdrops, things (or objects) 
in the Internet of Things (Tang et al., 2012; Ashton, 
2009; Doytsher et al., 2012) can be designed as MBRs 
(Tang et al., 2012; Guttman, 1984) and spatial index 
and query have amazing emerged as the empowering 
techniques fruitful in the hunt for client-friendly 
objects. 

In numerous reverences, the composition of spatial 
data bases is significantly divergent that of 
conventional databases. At the outset, the data model 
representing spatial objects has to be located well ahead 
of processing an index design. As a spatial object can 
take the shape of a specific point, a line segment, a 
curve, a polygonal segment, a 2D polygon or a 
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multidimensional polygon, it is highly essential to 
preserve its spatial data in a precise manner. 
Subsequently, insertions and deletions are broken up 
with revisions, as spatial objects are normally energetic 
(Lin, 2010). Spatial data is habitually represented by 
using exhaustive geometrical traits of spatial data base 
objects in a conservative spatial data base. This 
happens because geometrical one is the most inclusive 
depiction which can be presented on spatial data base 
objects. The input trait which shapes up a spatial 
database as a powerful tool is its admirable acumen to 
have its magical sway on spatial data, instead of just 
being able to amass and represent them. The most 
essential form of such a system represents responding 
to spatial queries related to the spatial traits of data. 
Based specifically on their space occupancies, two-
dimensional objects can be effectively categorized. 
Points with zero spatial occupancy are generally 
characterized by plain coordinates, which are aptly 
addressed and queried by several time-honored 
technologies. Polygons, circles, ellipses and rectangles 
get themselves parked in the domain of local data with 
nonzero spatial occupancy. And they are more often 
than not signified by rectangular objects, which are 
furthermore indexed and queried thus by various 
established methods. In view of the fact that the line 
segment is devoid of any area, it is impossible to be 
categorized as a non-zero-size object. However, it is 
observed that in quite a lot of previous investigations 
(Lin, 2010; Kollios et al., 1999; Papadopoulos et al., 
2002; Yanagisawa et al., 2003), line segments have 
been integrated and represented by grids, cells, 
rectangles or MBRs (minimum bounding rectangles). It 
is pertinent to note that there has been a stream of 
innovative methods for handling point and region data 
over the past twenty year’s duration.  

Guttman (1984) and Lin (2010) gets the credit for 

shrewdly launching the innovative R-tree as the most 

outstanding configuration, for the purpose of indexing 

nonzero-size objects. An R-tree effectively executes 

MBRs to embrace nonzero-size objects, followed by 

their representation as indexed entities. In a gigantic 

pictorial database like the GIS application, R-trees find 

themselves widely exploited for the purpose of 

indexing the spatial objects (Lin, 2010; Papadias and 

Theodoridis, 1997). The indexing of spatial data is 

based on scope and the recuperation of data from the 

spatial data base by means of queries is an added 

coverage. In mega spatial data bases, spatial 

histograms are highly beneficial for reasonably precise 

query processing. The hassle of producing optimal 

spatial histograms is NP-hard; therefore, several 

heuristic-based methods have set their elegant foot 

during the course of the past one and a half decades. 

However, it is unfortunate that they are habitually 

haunted by hassles such as the intricate algorithmic 

design and sensitivity to constraint setting, which tend 

to place severe roadblocks of in the pathway of their 

zero-trouble integration into the authentic technologies. 

Taking cues from the R-tree index framework, many a 

K-NN query algorithm has been coined (Lai et al., 

2002). Thus, an innovative branch and bound method is 

in the offing to move across R-tree, which is endowed 

with the efficiency of organizing and reducing the MBR 

in the interior of the nodes in R-tree to carry on K-

nearest neighbors query (Liu et al., 2001). On the cards 

is a novel spatial k-NN query technique by employing 

MINDIST and MINMAXDIST intended to organize 

and prune rules so as to bring down tree. The more 

recent advent is the new-fangled Active Branch List 

(ABL) in leaf-level, viz. rect1, rect2; rectk, ably 

equipped with the nodes which have to be visited at the 

moment as well as the child nodes needed to extend the 

probe. In the ascending order of MINDIST and 

MINMAXDIST, each level ABL is organized in R-tree 

well-set to accept K-NN query (Liu et al., 2004). 

Another innovative launch is the multi-object K-NN 

query, which followed pruning rules to realize multi-

object K-NN query in R-tree. On the other hand, R-tree 

paves the way for overlapping and exposure among the 

sister nodes, even in the case of the most precise match 

query, though it fails miserably to make a promise to 

visit only one branch while in possession of enquiries. 

In fact this is the most vital challenge having a telling 

impact on the probing prowess of R-tree. 

In this study, we proposed a reduced R+ tree with 

KNN algorithm for indexing and retrieval of spatial 

data. The R+ tree is constructed initially based on the 

selected spatial data. Then a function called joining 

nodes is applied to reduce the number of nodes by 

combining the half-filled nodes to form completely 

filled. The idea behind reducing the nodes is to perform 

search and retrieval quickly and efficiently. The 

reduced R+ tree is then processed with KNN query 

algorithm to fetch the nearest neighbors to a point 

query. To take the closest neighbors to a point query, 

the diminished R+ tree is thereafter subjected to 

dispensation with the KNN query algorithm. The core 

processes of KNN algorithm are performed in the 

shining strategy for reclaiming the closest neighbors. 

With the help of spatial data, the milestone method is 

meticulously measured for its performance and the 

outperforming outputs are outlined in the 

investigational study section. 

The vital donations of the technique are shown as 

follows: 

 

• Investigated several spatial data indexing methods 

in significant query processing technologies 

• Envisaged and designed a reduced R+ tree 

technique to characterized spatial data 

• The KNN query algorithm is extensively employed 

to reclaim data from the reduced R+ tree 

• Performed various feats and relative appraisal for 

the evaluation of the epoch-making techniques. 
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LITERATURE REVIEW 

 

Here, we propose to delve deep into a debate on the 

modern investigations focused on the spatial data 

extraction together with a live discussions on several 

techniques employed for the purpose. The section 

furnishes a recount of the modern actions in the arena 

of spatial data extraction. 

For processing of spatial queries in line-based 

database, an innovative technique for proficient and 

compact indexing configuration has effectively 

launched by Lin (2010). In this regard, points, lines and 

regions constitute the three vital entities for establishing 

vector-based objects in spatial data bases. Various 

indexing plans have been exceedingly discussed for 

dealing with point or region data. These conventional 

methods are powerful enough to organize point or 

region objects in a space into a hashing or hierarchical 

directory and hence furnish expert access approaches 

for accurate reclamations. On the other hand, while 

employing identical techniques, two different hassles 

surface as regards line segments as follows. In fact, the 

spatial data of line segments are not exactly explained 

with respect to that of points and/or regions. Moreover 

conventional approaches intended for addressing line 

segments tends to generate an incredibly large quantity 

of dead space and overlapping areas in internal and 

external nodes in the hierarchical directory. In the case 

of a line-based database, the former hassles puts 

insurmountable roadblocks in the pathway of super-

quality spatial preservation of line segments as against 

the latter which tends to distort the system presentation 

over a period of time. 

Cuzzocrea and Nucita (2011) have amazingly 

conceived and scientifically appraised an innovative 

technique which is functional for adeptly answering 

range queries over ongoing spatial data bases by duly 

blending geometrical data with topological logic. In 

addition, they brought to light me-SQE (Spatial Query 

Engine for Incomplete Information), inventive query 

machinery performing this technique. The eye-catching 

approach turns out to be both effectual and proficient in 

relation to synthetic as well as real-life spatial data sets. 

Further, in the long run, it empowers us to fine-tune the 

quality and the communicative authority of reclaimed 

answers by deriving remarkable advantages from the 

amenity of characterizing spatial data base objects 

throughout both the geometrical and the topological 

level. 

Strongly rooted on PB-tree with the parallel lines 

division, a K-NN query algorithm has been 

theoretically generated by Tang et al. (2012). “PB-tree 

index is entirely different from the conventional R-tree 

index, where PB-tree performs parallel lines to 

segregate the spatial region and applies parallel lines as 

the parent node. It is associated with the binary tree 

index framework and is dire need of querying three 

trivial segments contiguous to the queried object in 

each K-NN query. With the result, the search range is 

watered down and the query aptitude is fine-tuned. 

Related tests conducted vouchsafe the fact that PB-tree 

exhibits superior robustness vis-à-vis the conventional 

R-tree from the perspective of query presentation. PB 

tree is capable of avoiding the inadequacy of a 

mammoth size of overlap and exposure among nodes in 

R-tree and multiple index paths while on the lookout 

for data objects. Consequently, the PB-tree is 

competent to spot K-NN objects by satisfying the 

constraints swiftly and adeptly in mega databases” 

(Tang et al., 2012).  
Corral and Almedros-Jimenez (2007) “have 

astoundingly conceived a revise on R-trees, which 
resulted in multifarious inferences on the competency 
of advocated RBFS algorithm and its contrast in 
relation to parallel probe approaches such as Best-First 
Search (BFS) and Depth-First Branch-and-Bound 
(DFBnB)), with respect to disk accesses, feedback 
duration time and vital memory stipulations, 
considering several pertinent parameters as maximum 
branching factor (Cmax), cardinality of the final query 
result (K), distance threshold (q) and size of a global 
LRU buffer (B). As a rule, RBFS is aggressive for 
KNNQ and KCPQ where the maximum branching 
factor (Cmax) is huge enough and in some cases even 
better than DFBnB and very near BFS. Moreover, it 
emerges as a better option when the main memory faces 
constraints in our computer because of elated process 
surplus in our system, as it is linear space consuming 
with respect to the height of the R-trees. Nevertheless, 
RBFS is the most awful alternative for qDRQ and 
qDJQ. DFBnB is additionally a linear space algorithm 
and exhibits behavior identical to BFS for qDRQ and 
qDJQ and it sails to the summit when an LRU buffer is 
attached” (Corral and Almedros-Jimenez, 2007). In the 
long run, we are delighted to find that it is proved by 
test outcomes that BFS emerges par-excellence among 
the entire DBQs, though it is competent to overwhelm 
several main memory resources to efficiently perform 
spatial queries. 

Achakeev and Seeger (2012) devised an amazing 

class of spatial histograms gathered from the well-

regarded family of R-tree indexes. They brought to 

spotlight a cost-conscious approach that blends the 

bulk-loading of R-trees and composition of spatial 

histograms. Endowed with efficient exactness for 

selectivity evaluation of spatial queries, this conceives 

an energetic histogram method. Especially, the 

appraisal deficiency persistently takes a backseat with 

rocking number of histogram buckets, thus our historic 

histogram approach tastes gains from a huge number of 

histogram buckets. For the purpose of test appraisal, 

they analyzed and contrasted the charismatic feat of our 

method with state-of-the-art spatial histograms. In 

contrast to prior-performed tests, they subjected the feat 

to diverse clusters of workloads. 
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Motivation behind the approach: A spatial data can 

be described as a set of data “that identifies the 

geographic location of features and boundaries on 

Earth, such as natural or constructed features, oceans 

and more. Spatial data is usually stored as coordinates 

and topology and is data that can be mapped. Spatial 

data is often accessed, manipulated or analyzed through 

Geographic Information Systems” (GeoMAPP, 2010). 

The main concentration of the researchers is to find an 

efficient way for indexing the spatial data for efficient 

retrieving according to the need of situations. The 

algorithms like, R-tree, R+ tree, B tree, etc are the 

commonly used indexing algorithms for spatial data. 

The need for indexing is that, the indexed spatial data 

can be easily retrieved from the databases using query 

processing algorithms. Lin (2010) has recently 

proposed an approach for processing spatial data 

through efficient in line based queries. The approach 

was concentrating on B+ tree in a compressed manner, 

which efficient in time and space complexity. Inspired 

from the research, we have intended to propose a 

method for spatial data representation using reduced 

R+ tree. In the proposed approach, the reduced R+ tree 

is used extract nearest neighbors using KNN query 

algorithm. The reduced R+ tree is used to make the 

searching process and retrieval process efficient and 

quick. 

 
Spatial data representation: A spatial data base, in 
essence, is a unique database which is optimized to 
amass and enquire data which characterizes objects 
demarcated in a geometric space. A major chunk of 
spatial data bases entails characterization of plain 
geometric objects like points, lines and polygons. Still, 
certain spatial data bases deal with further intricate 
configurations like 3D objects, topological coverage, 
linear networks and TINs. Whereas characteristic 
databases are planned to organize diverse numeric and 
character types of data, supplementary functionality has 
to be ensured for databases to tackle spatial data types 
professionally, which are normally known as geometry 
or feature. The Open Geospatial Consortium defines the 
Simple Features specification and sets benchmarks for 
complementing spatial functionality to database 
systems. Taking into account the zooming significance 
of spatial data, there surfaces the critical requirement 
for techniques to proficiently organize and interrelate 
with the spatial data. It is high time a depiction model 
is put in place for the spatial data to successfully 
administer the same. The sterling method is all set to 
design an approach to characterize the spatial data. The 
most popular techniques doing the rounds for the 
characterization of the spatial data are known by the 
names, R tree, R+ tree, B+ tree. Though generally 
employed for representing the spatial data, they are 
prone to certain glaring deficiencies described as 
follows. R tree algorithm faces the music in regard to 
probing challenges during the incidence of the over 

lapping of rectangle. As a corrective measure, the R+ 
tree is shown the limelight to overshoot the thorny 
menace, though it leads to bottlenecks in the node 
administration. Further, B+ tree is equipped with the 
acumen of effectually organizing and successfully 
addressing the dilemma of the rectangle over lapping. 
Thus, it goes without saying that there is an ever-
zooming necessity for ushering in a proficient 
technique for addressing the issue of the spatial data 
illustration. 

 

Proposed approach for nearest neighbor retrieval 

from reduced R+ tree: Recently, “spatial data bases 

have been extensively adopted in the recent decade and 

various methods have been presented to store, browse, 

search and retrieve spatial objects. A spatial data” (Lin, 

2010) can be described as a set of “data that identifies 

the geographic location of features and boundaries on 

Earth, such as natural or constructed features, oceans 

and more. Spatial data is usually stored as coordinates 

and topology and is data that can be mapped. Spatial 

data is often accessed, manipulated or analyzed through 

Geographic Information Systems “(GeoMAPP, 2010). 

The main concentration of the researchers is to find an 

efficient way for indexing the spatial data for efficient 

retrieving according to the need of situations. The 

algorithms like, R-tree, R+tree, B tree, etc are the 

commonly used indexing algorithms for spatial data. 

The need for indexing is that, the indexed spatial data 

can be easily retrieved from the databases using query 

processing algorithms. Lin (2010) has recently 

proposed an approach for processing spatial data 

through efficient in line based queries. The approach 

was concentrating on B+ tree in a reduced manner, 

which efficient in time and space complexity. Inspired 

from the research, I have intended to propose a method 

for processing spatial data. The proposed approach 

uses two steps for extraction relational information 

from the spatial data: 

 

• Spatial data representation with reduced R+ tree 

• Information extraction with KNN Algorithm 
 

In the first step, the spatial data is accepted as the 
input and represented in the form of R+ tree. Here, we 
use a reduced R+ tree to reduce the number of nodes, 
which result in efficient node search and information 
retrieval. In next step, that is the information retrieval 
phase, the KNN algorithm extracts relevant information 
from the spatial data with the help of reduced R+ tree. 
The detailed explanation of the processes is plotted in 
the coming sections. 
 

The reduced R+ tree for spatial data representation: 
The issue of depiction of spatial data is one of the vital 
challenges of the innovative technique. The cardinal 
objective of the ambitious approach is invariably 
targeted in representing the spatial data in R+ tree. The 
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relevant task has to be completed without losing 
significant data and by bringing down the number of 
nodes. The decrease in the number of nodes has to be 
integrated for the swift reclamation of data. The R+ tree 
employed in the ground-breaking technique is an 
innovative, reduced R+ tree, where all our attention is 
focused on cutting down the number of nodes by 
empowering a node to allow its maximum occupancy. 
The building of the reduced R+ tree is exceedingly akin 
to the creation of R+ trees. In effect, though the R+ tree 
is an offshoot of R tree, it follows a dissimilar process 
in probing and insertion of nodes, which makes it 
vitally divergent from the R tree. Moreover, the big-
bang R+ tree envisages a unique process termed 
partitioning, wherein the hassles posed by overlapping 
in the case of R tree is effectively kept at bay. 

Figure 1 represents a sample of R+ tree, which 
possess bounding rectangles and partitions. Here A, B 

and C are considered as the bounding rectangles or 
minimum bounding rectangles. The partition of the R+ 
tree is represented using rectangle P. The minimum 
bounding rectangle or MBR of R+ tree is defined as the 
Rectangle that possess the minimum number of data 
elements in it. The reduced R+ tree tries to minimize 
the MBR and defines every bounding rectangle to be 
built with maximum number of data points. The 
reduced R+ tree give more concentration on the process 
like searching and insertion. Consider Fig. 2. 

Figure 2 characterizes the  R+ tree  generated  for 
Fig. 1. It illustrates that, the ultimate tree houses a 
number of half-filled nodes. Therefore, when a probe is 
intended to the R+ tree, it tends to consume further e 
time to bring in data because the pointer has to be 
routed along all the nodes. With a view to effective 
address the menace, we set out to execute a unique 
compression method, which cuts back the number of 

 

 
 

Fig. 1: Rectangle representation of the R+ tree 

 

 
 

Fig. 2: R+ tree for the Fig. 1 

 

 
 

Fig. 3: Reduced R+ tree 
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Fig. 4: Rectangle represented from the reduced R+ tree 

 
nodes by directing the address of consecutive data 
objects to the previous empty spaces of the prior nodes. 
With the result, the above-discussed R+ tree takes a 
new shape as Fig. 3. 

Figure 3 shows the reduced R+ tree generated for 
the represented Fig. 2. Through the compression, the 
nodes in rectangles B and C are reduced to form a 
single bounding rectangle Breduced. 

Figure 4 represents the minimum bounding 
rectangles of the reduced R+ tree. This picture reveals 
that, there is a limited number of MBR to search for and 
it is easy to point any data through search as compared 
to the Fig. 1. Now, move on to the process of 
constructing the reduced R+ tree. Similar to the otheR 
trees used for spatial data representation, the R+ tree 
also includes five major operations: 

 

• Search 

• Insertion 

• Deletion 

• Splitting the nodes 

• Joining the nodes 
 

The following section discusses the four process in 
detail. 
 
Searching data in reduced R+ tree: The probing 
algorithm is analogus to the technique employed in R+ 
trees. The motive underlying the probe is to initially 
decay the search space into disjoint sub-regions and for 
each and every one of these, move down the tree until 
the authentic data objects are located in the leaves. As 
the nodes are decreased in reduced R+ tree, the probe 
tends to be cost-effective with respect to the R+ trees. 
The search in reduced R+ tree is shown below in Fig. 5. 
 
Insertion on reduced R+ tree: Inserting a new 

rectangle in an R+-tree is carried out by probing the tree 

and supplementing the rectangle in leaf nodes. The 

divergence with the analogous algorithm for R-trees is 

that the input rectangle may be joined to more than one 

leaf node, in view of the fact that it may be divided to 

sub-rectangles along current partitions of the space. In 

the long run, brimming nodes are divided and splits are 

spread to parent as well as children nodes. The latter 

has to be kept updated, as a split to a parent node may 

bring in a space partition that influences the children 

nodes also. The code for incertion is exhibited in Fig. 6 

given below: 

 
Deletion: Deletion of a rectangle from an R+-tree is 
performed in the same way as in R-trees by initially 
spotting the rectangle (s) to be subjected to the process 
of deletion and thereafter steering clear of it (them) 
from the leaf nodes. The underlying motive for 
dispensation of multiple rectangles from leaf nodes is 
that the insertion schedule envisaged earlier is likely to 
bring in multiple copies for a newly inserted rectangle. 
In the case of diminished R+ tree deletion is drawn in 
the event of incidence of immaterial entry in the 
generated R+ tree. 
 

Splitting the nodes: In case a node overflows, there is 

a necessity for certain splitting algorithm so as to 

generate two new nodes. And it is highly essential that 

the two sub-nodes cover up reciprocally disjoint 

domains, we have to initially probe for a "good" 

partition (vertical or horizontal) which eventually 

decays the space into two sub-regions. This process is 

generally known as Partition, which invariably issues a 

clarion call for downward propagation of the split. Let 

us for instance, consider in Fig. 2. We assume that A is 

a parent node of B which, conversely, is a parent node 

of C. Therefore, if node A has to be divided, it is 

necessary  that  the  lower  level  nodes B and C are also  
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Fig. 5: Psuedocode for search in reduced R+ tree 
 

 
 
 
 
 
 
 
 
 

 

Fig. 6: Insertion psuedocode 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7: Pseudo code for node splitting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Psuedocode for joining node 

Algorithm search: 

Psuedocode for search in reduced R+ tree 

Input: R+ tree  

Output: All data objects including overlapped 

Step 1: Select the top Node R, from R + tree 

Step 2: If node N is not leaf, then 

For all (P, R) of top node R check if next node overlaps W, search window. 

Step 3: If so, Initiate Search (C, W, N), where C is the node that user pointed. 

Step 4: If N is a leaf, check all objects R in O and return those that overlap with W. 

 

Algorithm insert: 
Insertion psuedocode 
Input: R+ tree with input rectangle (IR) 
Output: The new R+ tree with inserted point 
Step 1: Select the node where IR goes and add  
Step 2: If node N is not a leaf, then for each entry (p, R) of N, 
Search for any overlapping 
If overlap then, Insert (C, IR), C is the child node 
Step 3: If N a leaf, add IR in R. If the entries into the rectangle is more the limit M, 
the initiate Split Node () Function 

Algorithm Split Node (N): 

Input: A node N 

Output: The new R+tree 

Step 1: Find a partition and create two new nodes  

Step 2: Find Partition on Rectangle X using the search method. P, be the pointer 

associated with node R 

Step 3: Create n1 = (p1, X1) and n2 = (p2, X2), the two nodes resulting from the split 

of R, Where X1 and X2 are new sub rectangles 

Step 4: Put in ni all nodes (pk, Rk) of O such that Rklies completely in Ri, for i = 1, 

2. For those nodes that Rk, Ri 

a) ifO is a leaf node, then put Rkin both new nodes 

b) Otherwise, use Split Node to recursively split the children nodes along the 

partition. Let (Pk1, Rk1) and (Pk2, Rk 2) be the two nodes after splitting (Pk, Rk), 

where Rki lies completely in Ri, i = 1, 2. Add those two nodes to the corresponding 

node ni. 

 

Algorithm joining nodes (R-reduced): 

Input: R+ tree with half-filled nodes 

Output: Reduced R+ tree 

Step 1: Let maxOccu MBR = n 

Step 2: Check each MBR for maxOccuMBR 

Step 3: For any MBR if (occuMBR<n) 

 Select those MBRs; 

Step4: If (MBRI&& MBRJ) has Less occupancy than maxOccuMBR 

 Find distance (MBRI, MBRJ) 

 If distance == Minimum 

 Check, 

occuMBR(MBRI)&&occuMBR(MBRJ) 

 Then,  

 Add point p from MBRI to MBRJ 

Step 5: Add points from MBRI to MBRJ until, 

 MBRI == Empty or MBRJ == fully filled 

Step 6: Repeat 3 to 5 untill maximum nodes are fully filled  

Step 7: End 
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subject to the process of division. The pseudopodia 

meant  for  node division is beautifully carved out in 

Fig. 7 shown above:  

 

Joining the nodes: The process of joining nodes trigger 

after the R+ tree is built completely. The procedure will 

search for half-filled and full filled nodes from the R+ 

tree. The half-filled nodes are selected and their empty 

spaces are accounted. The nearest MBR are selected and 

if both are half filled, we subject a joining function that 

will add the nodes to one MBR to another until an MBR 

gets completely filled or empty. In details, if MBR1 

possess two data points and MBR2 possess 2 data 

points. The condition is that the maximum data points 

possessed by an MBR is 4. If MBR1 and MBR2 are 

near, then data points from MBR2 is added to 

MBR1.Finally MBR1 gets completely filled and MBR2 

gets empty. So a MBR is reduced from the total 

structure, this helps in easy data search and retrieval. If 

MBR2 has three data points, the rest is added to another 

near MBR, proved the nearest MBR is half filled. 

The above Fig. 8 represents the psuedocode for 

joining the nodes according to the MBR present. 

Initially, we set the maximum occupancy of each MBR 

as “n”. Then each MBR present is checked for 

maximum occupancy and the MBRs with occupancy 

less than n is selected for the joining node process. 

Select MBRI and MBRJ, which has less occupancy than 

maximum. We subject a distance calculation between 

the MBRI and MBRJ and if the distance is minimum, the 

points from MBRI is passed to MBRJ. Assuming that 

MBRJ has more vacant space than MBRI. The process 

continues till maximum nodes are completely filled. 

 

Region queries handling: In the previous section, we 

are discussing about the reduced R+ tree and the 

application of algorithm to index spatial data and 

retrieve data accordingly. So far the discussions are 

through a point query based manner are just retrieving 

the data based on a single value query. The main 

challenge arises when a range of queries are subjected 

to the system for retrieving the data. In this section we 

discuss about how to handle range queries using the 

proposed system.  

 
MBR selection: The initial step in the process to map 

the data based on the MBRs. As per the proposed 

approach, we defined the Min_dist and Max-Min_dist 

of the MBR with respect to a point in the problem 

space. If the query is a single point, the Min_dist and 

Max_min_dist can be easily calculated. When a range 

of query is subjected, we have to represent the range as 

a single value point in order to ease the calculation as 

per the proposed approach. The idea is to find the 

centroid of the range queries. So if there is a 100 

queries are there in the input range query, we cannot 

individually  select  each  point  and  find its index from  

 
 

Fig. 9: Point to MBR matching 

 
our system. Thus a clustering algorithm is applied to 
range values; simple k-means algorithm is the 
algorithm we used, to represent the whole query as a 
centroid. We initially, generate 3 clusters for every set 
of queries and will subject three centroid values. Now, 
we select the each centroid and calculate the Min_Dist 
and Max_min_distance with respect to each MBR. The 
MBR that possess least value for both will be selected 
for the further process. The KNN query algorithm 
accepts the centroid values as the input and proceeds to 
the processing. 

Figure 9 represents the process of matching each 
point in the region based query in the desired Tree. 
Each point Li in the region query is separately selected 
and their distance to the MBR is calculated using the 
MinDistAndMaxDist calculation. The MBR with 
minimum distance for both MinDist and MaxMinDist is 
selected and the region is assigned to the particular 
MBR. The detailed process can be explained with help 
of point query basis. The second step of the proposed 
approach deals with query processing through KNN 
algorithm. We test the program by giving points query 
and process it with KNN algorithm. The idea behind the 
approach is to extract nearest neighbors from the data 
set corresponding to the given query. Since the spatial 
data concerns with information regarding geographical 
co-ordinates. The nearest neighbors constitute similar 
characteristics. The proposed approach uses the KNN 
algorithm for the process of extracting nearest 
neighbors from the spatial database. The KNN 
algorithm uses the reduced R+ tree for extracting the 
nearest neighbors. The problem can be defined as, a 
point query is subjected to the dataset and we need to 
identify the K nearest neighbors to the given query. 
Here, the K values is given from the user side and it is 
the number neighbors need to be extracted. The main 
object that KNN concentrate is the MBR of the reduced 
R+ tree. Consider the following Fig. 10. 

Figure 10 represents the scenario of point query 
and the MBR in the problem space. Now in order to 
extract the nearest neighbors of the point P(x,y), the 
KNN algorithm is applied. The KNN defines two 
parameters for finding the nearest neighbors from the 
MBR.  
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Fig. 10: MBR and point query 

 

 
 

Fig. 11: MINDIST and MINMAXDIST 

 

MINDIST: The parameters MINDIST is defined the 

minimum distance between the point query P(x, y) and 

an MBR R. If the point that is subjected as the query is 

inside a Rectangle R then, the minimum distance value 

between the point and rectangle will be zero. When the 

point is outside the rectangle R, then the MINDIST 

value will calculated as the distance between the point 

P and any data point in the perimeter of the rectangle R. 

i.e., MINDIST = distance (P, O). 

Here, distance () is the function used for 

calculating the distance between point P and data point 

in the rectangle R. The distance function used for the 

purpose will be the Euclidian distance. 

 

MINMAXDIST: The parameter MINMAXDIST is 

defined as the distance between the point P and object 

furthest and closest phase of the rectangle R. 

MINMAXDIST is the smallest possible upper bound of 

distances from the point P to the rectangle R. 

MINMAXDIST guarantees there is an object within the 

R at a distance to P less than or equal to it. The 

MINDIST and MINMAXDIST can be explained with 

the help of Fig. 11. 

Figure 11 represents the MINDIST and 

MINMAXDIST with respect to two points P1 and P2. 

The point P1 is outside the R1. So the distance between 

P1 and data point in R1, O3 is considered as the 

MINDIST between P1 and R1. The distance between 

P1 and O2 is considered as the MINMAXDIST. The 

case of P2 is different, because P2 is inside the 

rectangle R2, so the MINDIST is zero and there is only 

MINMAXDIST is taken into account. Note that, the 

KNN will process only one point query at a time. When 

a point query is subjected to the R+ tree, all the 

MINDIST and MINMAXDIST will be calculated with 

respect to the input query point. The KNN uses pruning 

conditions to retrieve the nearest neighbors efficiently: 

 

• An MBR R is discarded if there exists another R’ 
such that MINDIST (P, R) >MINMAXDIST(P, R’) 

• An object O is discarded if there exists an R such 
that ACTUALDIST (P, O) >MINIMAXDIST(P, 
R) 

• An MBR R is discarded if an object O is found 
such that MINDIST (P, R) >ACTUAL_DIST (P, 
O) 

 

As per these pruning conditions, the relevant 

rectangles are sustained and rest of the rectangles are 

discarded. The nodes present in the sustained rectangles 

are selected and the nearest neighbors are selected from 

it according to the K value. The data points, which is 

least distinct to the point query is selected and rest are 

discarded: 
 

NN (P) = Distance (P, Oi) →Minimum 
 

Here, NN (P) represents the nearest neighbors of P, 
Oi represents the data points in the sustained rectangles. 
The value of “i” varies from 1 to n, n is the total 
number of data points available. Similar to the above 
explanation of point query, each point in the region 
query follows these steps and they it will be assigned to 
MBR, which possess average minimum distance. Now 
with the help of MBR, we construct the reduced R+ tree 
so as to minimize the number of nodes. The process 
executed in the selection of MBR helps the proposed 
approach to minimize the number of nodes because a 
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region in the spatial data is plotted to the nearest MBR 
without overflow. The MBR is selected in such way 
that, the process check whether the MBR is fully filled 
or partially filled. The MBR is selected only if it is 
partially filled. The partially filled MBR is then selected 
and populated with the points in the region query and if 
the MBR exceeds the capacity and data points in the 
region query is left behind. Then another nearest MBR 
is selected and it is populated with the rest of the data. 
 
EXPERIMENTAL RESULTS AND ANALYSIS 

 
The working and detailing of the proposed 

approach is plotted in the prior section. In this section, 
we discuss about the experimental analysis of the 
proposed approach. A spatial dataset is given to the 
proposed approach and the responses of the proposed 
approach is recorded to evaluate the performance. 
 
Experimental set up: The proposed approach is 
programmed in java program with JDK 1.7.0. The 
system used for developing the program uses anIntel 
core i5 processor, 500GB hard disk and 3GB of RAM. 
The dataset used for the proposed approach is a spatial 
data set with more than 1000 data points. The datasets 
are classified into 5 groups and tested with the proposed 
approach. The dataset is divided into groups like 200, 
400, 600, 800 and 1000. The dataset is supplied to both 
R+ tree and reduced R+ tree for evaluation purposes. 
The detailed evaluation of the proposed approach is 
plotted in the following section. We are using two 
dataset from the spatial data repository 
(Spatialkey, 2012) and processed the database as 
explained above. 
 
Performance analysis: In this section, we plot the 

performance of the proposed R+ tree algorithm aided 

with KNN for extracting the neighbors. The 

performance of the proposed approach is processed in 

terms of the parameters like computation time, retrieval 

time and node generated. The two dataset downloaded 

are selected for the evaluation purposes. The 

computation time represents the time required to run the 

whole process. The retrieval time deals with time 

required to retrieve the nearest neighbors through the 

give query based on proposed algorithm. The 

performance is evaluated as a comparison to the 

existing R+ tree based method.  

 

Performance based on computation time: Initial the 

datasets are labeled as dataset 1 and dataset 2. There 

datasets are supplied to the R+ tree based method and 

reduced R+ tree based method. The total time required 

to represent the total data points into the R+ tree and 

reduced R+ tree is plotted below. The both datasets are 

reduced to 1000 data point and are divided into five 

groups as mentioned above. Here, the computation time 

obtained for five different data records for both the 

proposed  reduced  R+  tree  and  the existing R+ tree is  

Table 1: Computation time dataset 1 

Data records R+ tree Reduced R+ tree 

200 1087 854 

400 1158 890 
600 1378 901 

800 1388 910 

1000 1476 914 

 

Table 2: Computation time dataset 2 

Data records R+ tree Reduced R+ tree 

200 13724 11241 
400 12475 11800 

600 13547 12001 

800 14251 12009 
1000 15374 12900 

 
Table 3: Retrieval time from dataset 1 

Data records R+ tree Reduced R+ tree 

200 220 180 
400 325 195 

600 360 202 

800 496 256 
1000 524 302 

 

Table 4: Retrieval time from dataset 2 

Data records R+ tree Reduced R+ tree 

200 620 540 

400 725 590 

600 788 620 
800 801 645 

1000 901 711 

 
tabulated above in Table 1 for dataset 1 and in Table 2 

for dataset 2.  

Figure 12 and 13 represents the performance of the 

proposed approach in terms of dataset 1 and dataset 2. 

The analysis from the fig shows that at every level the 

proposed reduced R+ tree algorithm has the upper hand 

in computation time. This implicate that the time 

required for indexing the data points in reduced R+ tree 

is less than that of the traditional R+ tree method. The 

reduced R+ tree has consumed indexing time for the 

peak level of data is only 914 ms for dataset 1 and 

12900 ms for dataset 2. Even though the numbers of 

data points are same there is huge difference between 

the computation times of the datasets. The reason 

behind that is the data, which is possessed by both 

datasets. The analysis from the figs shows that as the 

number of data increases, the computation time 

increases in both cases. The difference time represents 

the effectiveness of the proposed approach over 

traditional R+ tree.  

 

Performance based on retrieval time: The retrieval 

time deals with the time required to retrieve nearest 

neighbors by the KNN algorithm from the indexed tree 

upon giving the input query. The same datasets are used 

in this process also, so we can have a clear record on 

the performance of the proposed approach. For the both 

dataset 1 and dataset 2 the retrieval obtained for the 

proposed reduces R+ tree and existing R+ tree for five 

different data records are tabulated in Table 3 and 4. 
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Fig. 12: Computation time of dataset 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Computation time for dataset 2 

 

 
 

Fig. 14: Retrieval time from dataset 1 

 

Figure 14 and 15 represents the retrieval time 

consumed by the proposed R+ tree and conventional 

R+ tree. The KNN algorithm is applied after indexing 

the data with conventional R+ tree and reduced R+ 

tree. So the responses are plotted in the above depicted 

figs. The analysis from the figs shows that retrieval 

time is considerable low for the reduced R+ tree based 

method  as  compared  to  conventional   R+ tree  based  

 
 

Fig. 15: Retrieval time from dataset 2 

 

 
 

Fig. 16: Number of nodes 

 
Table 5: Number of nodes 

Data records R+ tree Reduced R+ tree 

200 72 70 

400 148 145 
600 251 250 

800 282 280 

1000 324 316 

 

method. The proposed approach has achieved an 

average retrieval time of 227 ms for dataset 2 and 621.2 

ms for dataset 1, while the conventional R+ tree based 

method achieved about 767 ms for dataset 2 and 400 ms 

for dataset 1. 

 

Number of nodes: The number of nodes obtained for 

both the proposed reduced R+ tree and existing R+ tree 

for different data records are tabulated in Table 5. 

Figure 16 represents the number of nodes possessed 

by R+ tree and Reduced R+ tree after indexing the data 

points. As per the name states, the proposed approach 

has less number of nodes with respect to the 

conventional R+ tree. We can see a remarkable 

difference in the number of nodes between the two 

algorithms. The conventional R+ tree requires about 

324 nodes for representing 1000 data points while the 
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reduced R+ tree takes about 316 nodes. The analysis 

can be accounted that the proposed approach also index 

similar number of nodes as compared to the R+ tree. 

The advantage of the proposed approach is terms of 

retrieval time and computational time. The process is 

conduced setting a limit of 4 data points as the 

maximum occupancy of a node. The remarkable 

difference number of nodes possessed by reduced R+ 

tree is because of eliminating the empty spaces in the 

nodes. The depicted image uses the dataset 2 for the 

purpose of counting number of nodes. 

 

CONCLUSION 

 

In this study, a method is plotted for retrieving 

nearest neighbors from spatial data indexed by R+ tree. 

The approach uses a reduced R+ tree for the purpose of 

representing the spatial data. Initially the spatial data is 

selected and R+ tree is constructed accordingly. Then a 

function called joining nodes is applied to reduce the 

number of nodes by combining the half-filled nodes to 

form completely filled. The idea behind reducing the 

nodes is to perform search and retrieval quickly and 

efficiently. The reduced R+ tree is then processed with 

KNN query algorithm to fetch the nearest neighbors to 

a point query. The basic procedures of KNN algorithm 

are used in the proposed approach for retrieving the 

nearest neighbors. The proposed approach is evaluated 

for its performance with spatial data and results are 

plotted in the experimental analysis section. The 

experiments showed that the number of nodes 

possessed by reduced R+ tree is remarkably lower than 

that of the conventional R+ tree. The proposed 

approach is efficient in terms computation time and 

retrieval time also. 

 

REFERENCES 

 

Achakeev, D. and B. Seeger, 2012. A class of R-tree 

histograms for spatial databases. Proceeding of the 

20th International Conference on Advances in 

Geographic Information Systems (SIGSPATIAL 

'12), pp: 450-453. 

Ashton, K., 2009. That ‘Internet of Things’ thing. RFID 

J., 22(2009): 97-114. 

Butenuth, M., G. Gsseln, M. Tiedge, C. Heipke, U. 

Lipeck and M. Sester, 2007. Integration of 

heterogeneous  Spatial  data  in a federated 

database.    ISPRS    J.    Photogramm.,    62(5): 

328-346. 

Calì, A., D. Lembo and R. Rosati, 2003. Query 

rewriting and answering under constraints in data 

integration systems. Proceeding of the International 

Joint  Conference  on  Artificial  Intelligence, pp: 

16-21. 

Chong, E.I., J. Srinivasan, S. Das, C. Freiwald, A. 

Yalamanchi, M. Jagannath, A.T. Tran, R. Krishnan 

and R. Jiang, 2003. A mapping mechanism to 

support bitmap index and other auxiliary structures 

on tables stored as primary B
+
-trees. SIGMOD 

Rec., 32(2): 78-88. 

Corral, A. and J. Almedros-Jimenez, 2007. A 

performance comparison of distance-based query 

algorithms using R-trees in spatial databases. 

Inform. Sciences, 177(11): 2207-2237. 

Cuzzocrea, A. and A. Nucita, 2011. Enhancing 

accuracy and expressive power of range query 

answers over incomplete spatial databases via a 

novel reasoning approach. Data Knowl. Eng., 

70(8): 702-716. 

Doytsher, Y., B. Galon and Y. Kanza, 2012. Querying 

socio-spatial networks on the world-wide web. 

Proceeding of the 21st International World Wide 

Web  Conference  (WWW).  Lyon,  France, pp: 

329-332. 

Gaede, V. and O. Gunther, 1998. Multidimensional 

access  methods.  ACM  Comput.  Surv., 30(2): 

170-231. 

GEOMAPP, 2010. Retrieved from: www.geomapp.net. 

Guttman, A., 1984. R-trees: A dynamic index structure 

for spatial searching. Proceeding of the ACM 

SIGMOD International Conference on 

Management of Data. Boston, Massachusetts, pp: 

47-57. 

Ives, Z.G., D. Florescu, M. Friedman, A. Levy and D.S. 

Weld, 1999. An adaptive query execution system 

for data integration. Proceeding of the ACM 

International Conference on Management of Data, 

pp: 299-310. 

Jagadish, H.V., B.C. Ooi, K.L. Tan, C. Yu and R. 

Zhang, 2005. iDistance: An adaptive B
+
-tree based 

indexing method for nearest neighbor search. ACM 

T. Database Syst., 30(2): 364-397. 

Kim, J.H., Y.H. Kim, S.W. Kim and S.H. Ok, 2002. An 

efficient processing of queries with joins and 

aggregate functions in data warehousing 

environment. Proceeding of the 13th International 

Workshop on Database and Expert Systems 

Applications.   Aix-en-Provence,   France,  pp: 

785-794. 

Kollios, G., D. Gunopulos and V.J. Tsotras, 1999. On 

indexing mobile objects. Proceeding of the 18th 

ACM SIGMOD-SIGACT-SIGART Symposium on 

Principles of Database Systems (PODS’99), pp: 

261-272. 

Lai, L., Z. Liu and L. Yan, 2002. K-nearest neighbor 

search algorithm by using R-tree. Comput. Eng. 

Des., 23(9). 

Lin, H.Y., 2010. Efficient and compact indexing 

structure for processing of spatial queries in line-

based   databases.   Data   Knowl.  Eng.,  64(1): 

365-380. 



 

 

Res. J. Appl. Sci. Eng. Technol., 10(2): 138-150, 2015 

 

150 

Liu, Y., Z. Zhu and S. Shi, 2001. A new space k-nearest 
neighbor query strategy. J. Shanghai Jiao Tong 
Univ., 35(9). 

Liu, Y., S. Bo, Q. Zhang and Z. Hao, 2004. Multi-
object nearest neighbor queries. Comput. Eng., 
30(11): 66-68. 

Papadias, D. and Y. Theodoridis, 1997. Spatial 
relations, minimum bounding rectangles and 
spatial data structures. Int. J. Geogr. Inf. Sci., 
11(2): 111-138. 

Papadopoulos, D., G. Kollios, D. Gunopulos and V.J. 
Tsotras, 2002. Indexing mobile objects on the 
plane. Proceedings of the 13th International 
Workshop on Database and Expert Systems 
Applications (DESA’02), pp: 693-697. 

Shekhar, S. and S. Chawla, 2003. Spatial Databases: A 
Tour. Prentice-Hall, New Jersey. 

Spatialkey, 2012. Retrieved from: http://support. 

spatialkey.com/spatialkey-sample-csv-data/. 

Tang, J., Z.B. Zhou and Q. Wang, 2012. K-NN query 

algorithm based on PB-tree with the parallel lines 

division. Commun. Mobile Comput., 1(1): 1-10. 

Taniar, D. and J.W. Rahayu, 2003. Global B
+
-tree 

indexing in parallel database systems. Lect. Notes 

Comput. Sc., 2690: 701-708. 

Yanagisawa, Y., J. Akahani and T. Satoh, 2003. Shape-

based similarity query for trajectory of mobile 

objects. Proceeding of the 4th International 

Conference on Mobile Data Management. 

Melbourne, Australia, pp: 63-77. 

 

 

 


