
Research Journal of Applied Sciences, Engineering and Technology 10(2): 138-150, 2015

DOI:10.19026/rjaset.10.2565

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: September 13, 2014 Accepted: November 26, 2014 Published: May 20, 2015

Corresponding Author: S. Palaniappan, Department of CSE, Saveetha University, Chennai, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

138

Research Article
An Approach to Indexing and Retrieval of Spatial Data with Reduced R+ Tree and

K-NN Query Algorithm

1
S. Palaniappan,

2
T.V. Rajinikanth and

3
A. Govardhan

1
Department of CSE, Saveetha University, Chennai,

2
Department of CSE, SNIST, Hyderabad,

3
Department of SIT, JNTUH, Kukatpally, Hyderabad-500085, Telangana, India

Abstract: Recently, “spatial data bases have been extensively adopted in the recent decade and various methods
have been presented to store, browse, search and retrieve spatial objects”. In this study, a method is plotted for
retrieving nearest neighbors from spatial data indexed by R+ tree. The approach uses a reduced R+ tree for the
purpose of representing the spatial data. Initially the spatial data is selected and R+ tree is constructed accordingly.
Then a function called joining nodes is applied to reduce the number of nodes by combining the half-filled nodes to
form completely filled. The idea behind reducing the nodes is to perform search and retrieval quickly and efficiently.
The reduced R+ tree is then processed with KNN query algorithm to fetch the nearest neighbors to a point query.
The basic procedures of KNN algorithm are used in the proposed approach for retrieving the nearest neighbors. The
proposed approach is evaluated for its performance with spatial data and results are plotted in the experimental
analysis section. The experimental results showed that the proposed approach is remarkably up a head than the
conventional methods. The maximum time required to index the 1000 data points by the R+ tree is 10324 ms. The
number of nodes possessed by reduced R+ tree is also less for 1000 data points as compared to the conventional R+
tree algorithm.

Keywords: Indexing, KNN algorithm, query, R+ tree, spatial data

INTRODUCTION

The Spatial Data Base System (SDBS) (Corral and

Almedros-Jimenez, 2007) has recently surfaced as a
database system which furnishes spatial data types in
its data version and query language and possesses
spatial data types in its functioning, meting out spatial
indexing and proficient spatial query processing among
others (Shekhar and Chawla, 2003). The onset of last
decade has eagerly witnessed the launching and
execution of mega spatial databases and various
techniques (Lin, 2010; Chong et al., 2003; Kim et al.,
2002; Jagadish et al., 2005; Taniar and Rahayu, 2003)
with a view to amass, scan, probe and reclaim spatial
objects. A superb spatial database is endowed with the
qualities of sustaining and bringing together both
explicit and implicit data of spatial objects. The explicit
data of an object contains its locality, scope, direction,
dimension and bounds. Implicit data, on the other hand,
encompasses the spatial association between discrete
objects, the allocation and density of objects in a
specific area and the exposure for certain objects. The
spatial objects are generally classified by Lin (2010)
and Gaede and Gunther (1998) in d-dimensional
Euclidean space. In heterogeneous spatial database

environs of modern Geographical Information Systems
(GIS), data repositories collected and integrated from
different spatial data origins more habitually coexist.
Data integration surfaces as the vital subject to be
faced-off (Cuzzocrea and Nucita, 2011; Butenuth et al.,
2007) at present, which is extensively studies in the
structure of spatial databases (Cuzzocrea and Nucita,
2011; Calì et al., 2003; Ives et al., 1999). Conservative
spatial databases like those basically self-governing
GIS, unrefined data files amassing geographical data
and GIS-linked Web pages are outstanding examples of
these sources. In diverse backdrops, things (or objects)
in the Internet of Things (Tang et al., 2012; Ashton,
2009; Doytsher et al., 2012) can be designed as MBRs
(Tang et al., 2012; Guttman, 1984) and spatial index
and query have amazing emerged as the empowering
techniques fruitful in the hunt for client-friendly
objects.

In numerous reverences, the composition of spatial
data bases is significantly divergent that of
conventional databases. At the outset, the data model
representing spatial objects has to be located well ahead
of processing an index design. As a spatial object can
take the shape of a specific point, a line segment, a
curve, a polygonal segment, a 2D polygon or a

Res. J. Appl. Sci. Eng. Technol., 10(2): 138-150, 2015

139

multidimensional polygon, it is highly essential to
preserve its spatial data in a precise manner.
Subsequently, insertions and deletions are broken up
with revisions, as spatial objects are normally energetic
(Lin, 2010). Spatial data is habitually represented by
using exhaustive geometrical traits of spatial data base
objects in a conservative spatial data base. This
happens because geometrical one is the most inclusive
depiction which can be presented on spatial data base
objects. The input trait which shapes up a spatial
database as a powerful tool is its admirable acumen to
have its magical sway on spatial data, instead of just
being able to amass and represent them. The most
essential form of such a system represents responding
to spatial queries related to the spatial traits of data.
Based specifically on their space occupancies, two-
dimensional objects can be effectively categorized.
Points with zero spatial occupancy are generally
characterized by plain coordinates, which are aptly
addressed and queried by several time-honored
technologies. Polygons, circles, ellipses and rectangles
get themselves parked in the domain of local data with
nonzero spatial occupancy. And they are more often
than not signified by rectangular objects, which are
furthermore indexed and queried thus by various
established methods. In view of the fact that the line
segment is devoid of any area, it is impossible to be
categorized as a non-zero-size object. However, it is
observed that in quite a lot of previous investigations
(Lin, 2010; Kollios et al., 1999; Papadopoulos et al.,
2002; Yanagisawa et al., 2003), line segments have
been integrated and represented by grids, cells,
rectangles or MBRs (minimum bounding rectangles). It
is pertinent to note that there has been a stream of
innovative methods for handling point and region data
over the past twenty year’s duration.

Guttman (1984) and Lin (2010) gets the credit for

shrewdly launching the innovative R-tree as the most

outstanding configuration, for the purpose of indexing

nonzero-size objects. An R-tree effectively executes

MBRs to embrace nonzero-size objects, followed by

their representation as indexed entities. In a gigantic

pictorial database like the GIS application, R-trees find

themselves widely exploited for the purpose of

indexing the spatial objects (Lin, 2010; Papadias and

Theodoridis, 1997). The indexing of spatial data is

based on scope and the recuperation of data from the

spatial data base by means of queries is an added

coverage. In mega spatial data bases, spatial

histograms are highly beneficial for reasonably precise

query processing. The hassle of producing optimal

spatial histograms is NP-hard; therefore, several

heuristic-based methods have set their elegant foot

during the course of the past one and a half decades.

However, it is unfortunate that they are habitually

haunted by hassles such as the intricate algorithmic

design and sensitivity to constraint setting, which tend

to place severe roadblocks of in the pathway of their

zero-trouble integration into the authentic technologies.

Taking cues from the R-tree index framework, many a

K-NN query algorithm has been coined (Lai et al.,

2002). Thus, an innovative branch and bound method is

in the offing to move across R-tree, which is endowed

with the efficiency of organizing and reducing the MBR

in the interior of the nodes in R-tree to carry on K-

nearest neighbors query (Liu et al., 2001). On the cards

is a novel spatial k-NN query technique by employing

MINDIST and MINMAXDIST intended to organize

and prune rules so as to bring down tree. The more

recent advent is the new-fangled Active Branch List

(ABL) in leaf-level, viz. rect1, rect2; rectk, ably

equipped with the nodes which have to be visited at the

moment as well as the child nodes needed to extend the

probe. In the ascending order of MINDIST and

MINMAXDIST, each level ABL is organized in R-tree

well-set to accept K-NN query (Liu et al., 2004).

Another innovative launch is the multi-object K-NN

query, which followed pruning rules to realize multi-

object K-NN query in R-tree. On the other hand, R-tree

paves the way for overlapping and exposure among the

sister nodes, even in the case of the most precise match

query, though it fails miserably to make a promise to

visit only one branch while in possession of enquiries.

In fact this is the most vital challenge having a telling

impact on the probing prowess of R-tree.

In this study, we proposed a reduced R+ tree with

KNN algorithm for indexing and retrieval of spatial

data. The R+ tree is constructed initially based on the

selected spatial data. Then a function called joining

nodes is applied to reduce the number of nodes by

combining the half-filled nodes to form completely

filled. The idea behind reducing the nodes is to perform

search and retrieval quickly and efficiently. The

reduced R+ tree is then processed with KNN query

algorithm to fetch the nearest neighbors to a point

query. To take the closest neighbors to a point query,

the diminished R+ tree is thereafter subjected to

dispensation with the KNN query algorithm. The core

processes of KNN algorithm are performed in the

shining strategy for reclaiming the closest neighbors.

With the help of spatial data, the milestone method is

meticulously measured for its performance and the

outperforming outputs are outlined in the

investigational study section.

The vital donations of the technique are shown as

follows:

• Investigated several spatial data indexing methods

in significant query processing technologies

• Envisaged and designed a reduced R+ tree

technique to characterized spatial data

• The KNN query algorithm is extensively employed

to reclaim data from the reduced R+ tree

• Performed various feats and relative appraisal for

the evaluation of the epoch-making techniques.

Res. J. Appl. Sci. Eng. Technol., 10(2): 138-150, 2015

140

LITERATURE REVIEW

Here, we propose to delve deep into a debate on the

modern investigations focused on the spatial data

extraction together with a live discussions on several

techniques employed for the purpose. The section

furnishes a recount of the modern actions in the arena

of spatial data extraction.

For processing of spatial queries in line-based

database, an innovative technique for proficient and

compact indexing configuration has effectively

launched by Lin (2010). In this regard, points, lines and

regions constitute the three vital entities for establishing

vector-based objects in spatial data bases. Various

indexing plans have been exceedingly discussed for

dealing with point or region data. These conventional

methods are powerful enough to organize point or

region objects in a space into a hashing or hierarchical

directory and hence furnish expert access approaches

for accurate reclamations. On the other hand, while

employing identical techniques, two different hassles

surface as regards line segments as follows. In fact, the

spatial data of line segments are not exactly explained

with respect to that of points and/or regions. Moreover

conventional approaches intended for addressing line

segments tends to generate an incredibly large quantity

of dead space and overlapping areas in internal and

external nodes in the hierarchical directory. In the case

of a line-based database, the former hassles puts

insurmountable roadblocks in the pathway of super-

quality spatial preservation of line segments as against

the latter which tends to distort the system presentation

over a period of time.

Cuzzocrea and Nucita (2011) have amazingly

conceived and scientifically appraised an innovative

technique which is functional for adeptly answering

range queries over ongoing spatial data bases by duly

blending geometrical data with topological logic. In

addition, they brought to light me-SQE (Spatial Query

Engine for Incomplete Information), inventive query

machinery performing this technique. The eye-catching

approach turns out to be both effectual and proficient in

relation to synthetic as well as real-life spatial data sets.

Further, in the long run, it empowers us to fine-tune the

quality and the communicative authority of reclaimed

answers by deriving remarkable advantages from the

amenity of characterizing spatial data base objects

throughout both the geometrical and the topological

level.

Strongly rooted on PB-tree with the parallel lines

division, a K-NN query algorithm has been

theoretically generated by Tang et al. (2012). “PB-tree

index is entirely different from the conventional R-tree

index, where PB-tree performs parallel lines to

segregate the spatial region and applies parallel lines as

the parent node. It is associated with the binary tree

index framework and is dire need of querying three

trivial segments contiguous to the queried object in

each K-NN query. With the result, the search range is

watered down and the query aptitude is fine-tuned.

Related tests conducted vouchsafe the fact that PB-tree

exhibits superior robustness vis-à-vis the conventional

R-tree from the perspective of query presentation. PB

tree is capable of avoiding the inadequacy of a

mammoth size of overlap and exposure among nodes in

R-tree and multiple index paths while on the lookout

for data objects. Consequently, the PB-tree is

competent to spot K-NN objects by satisfying the

constraints swiftly and adeptly in mega databases”

(Tang et al., 2012).
Corral and Almedros-Jimenez (2007) “have

astoundingly conceived a revise on R-trees, which
resulted in multifarious inferences on the competency
of advocated RBFS algorithm and its contrast in
relation to parallel probe approaches such as Best-First
Search (BFS) and Depth-First Branch-and-Bound
(DFBnB)), with respect to disk accesses, feedback
duration time and vital memory stipulations,
considering several pertinent parameters as maximum
branching factor (Cmax), cardinality of the final query
result (K), distance threshold (q) and size of a global
LRU buffer (B). As a rule, RBFS is aggressive for
KNNQ and KCPQ where the maximum branching
factor (Cmax) is huge enough and in some cases even
better than DFBnB and very near BFS. Moreover, it
emerges as a better option when the main memory faces
constraints in our computer because of elated process
surplus in our system, as it is linear space consuming
with respect to the height of the R-trees. Nevertheless,
RBFS is the most awful alternative for qDRQ and
qDJQ. DFBnB is additionally a linear space algorithm
and exhibits behavior identical to BFS for qDRQ and
qDJQ and it sails to the summit when an LRU buffer is
attached” (Corral and Almedros-Jimenez, 2007). In the
long run, we are delighted to find that it is proved by
test outcomes that BFS emerges par-excellence among
the entire DBQs, though it is competent to overwhelm
several main memory resources to efficiently perform
spatial queries.

Achakeev and Seeger (2012) devised an amazing

class of spatial histograms gathered from the well-

regarded family of R-tree indexes. They brought to

spotlight a cost-conscious approach that blends the

bulk-loading of R-trees and composition of spatial

histograms. Endowed with efficient exactness for

selectivity evaluation of spatial queries, this conceives

an energetic histogram method. Especially, the

appraisal deficiency persistently takes a backseat with

rocking number of histogram buckets, thus our historic

histogram approach tastes gains from a huge number of

histogram buckets. For the purpose of test appraisal,

they analyzed and contrasted the charismatic feat of our

method with state-of-the-art spatial histograms. In

contrast to prior-performed tests, they subjected the feat

to diverse clusters of workloads.

Res. J. Appl. Sci. Eng. Technol., 10(2): 138-150, 2015

141

Motivation behind the approach: A spatial data can

be described as a set of data “that identifies the

geographic location of features and boundaries on

Earth, such as natural or constructed features, oceans

and more. Spatial data is usually stored as coordinates

and topology and is data that can be mapped. Spatial

data is often accessed, manipulated or analyzed through

Geographic Information Systems” (GeoMAPP, 2010).

The main concentration of the researchers is to find an

efficient way for indexing the spatial data for efficient

retrieving according to the need of situations. The

algorithms like, R-tree, R+ tree, B tree, etc are the

commonly used indexing algorithms for spatial data.

The need for indexing is that, the indexed spatial data

can be easily retrieved from the databases using query

processing algorithms. Lin (2010) has recently

proposed an approach for processing spatial data

through efficient in line based queries. The approach

was concentrating on B+ tree in a compressed manner,

which efficient in time and space complexity. Inspired

from the research, we have intended to propose a

method for spatial data representation using reduced

R+ tree. In the proposed approach, the reduced R+ tree

is used extract nearest neighbors using KNN query

algorithm. The reduced R+ tree is used to make the

searching process and retrieval process efficient and

quick.

Spatial data representation: A spatial data base, in
essence, is a unique database which is optimized to
amass and enquire data which characterizes objects
demarcated in a geometric space. A major chunk of
spatial data bases entails characterization of plain
geometric objects like points, lines and polygons. Still,
certain spatial data bases deal with further intricate
configurations like 3D objects, topological coverage,
linear networks and TINs. Whereas characteristic
databases are planned to organize diverse numeric and
character types of data, supplementary functionality has
to be ensured for databases to tackle spatial data types
professionally, which are normally known as geometry
or feature. The Open Geospatial Consortium defines the
Simple Features specification and sets benchmarks for
complementing spatial functionality to database
systems. Taking into account the zooming significance
of spatial data, there surfaces the critical requirement
for techniques to proficiently organize and interrelate
with the spatial data. It is high time a depiction model
is put in place for the spatial data to successfully
administer the same. The sterling method is all set to
design an approach to characterize the spatial data. The
most popular techniques doing the rounds for the
characterization of the spatial data are known by the
names, R tree, R+ tree, B+ tree. Though generally
employed for representing the spatial data, they are
prone to certain glaring deficiencies described as
follows. R tree algorithm faces the music in regard to
probing challenges during the incidence of the over

lapping of rectangle. As a corrective measure, the R+
tree is shown the limelight to overshoot the thorny
menace, though it leads to bottlenecks in the node
administration. Further, B+ tree is equipped with the
acumen of effectually organizing and successfully
addressing the dilemma of the rectangle over lapping.
Thus, it goes without saying that there is an ever-
zooming necessity for ushering in a proficient
technique for addressing the issue of the spatial data
illustration.

Proposed approach for nearest neighbor retrieval

from reduced R+ tree: Recently, “spatial data bases

have been extensively adopted in the recent decade and

various methods have been presented to store, browse,

search and retrieve spatial objects. A spatial data” (Lin,

2010) can be described as a set of “data that identifies

the geographic location of features and boundaries on

Earth, such as natural or constructed features, oceans

and more. Spatial data is usually stored as coordinates

and topology and is data that can be mapped. Spatial

data is often accessed, manipulated or analyzed through

Geographic Information Systems “(GeoMAPP, 2010).

The main concentration of the researchers is to find an

efficient way for indexing the spatial data for efficient

retrieving according to the need of situations. The

algorithms like, R-tree, R+tree, B tree, etc are the

commonly used indexing algorithms for spatial data.

The need for indexing is that, the indexed spatial data

can be easily retrieved from the databases using query

processing algorithms. Lin (2010) has recently

proposed an approach for processing spatial data

through efficient in line based queries. The approach

was concentrating on B+ tree in a reduced manner,

which efficient in time and space complexity. Inspired

from the research, I have intended to propose a method

for processing spatial data. The proposed approach

uses two steps for extraction relational information

from the spatial data:

• Spatial data representation with reduced R+ tree

• Information extraction with KNN Algorithm

In the first step, the spatial data is accepted as the
input and represented in the form of R+ tree. Here, we
use a reduced R+ tree to reduce the number of nodes,
which result in efficient node search and information
retrieval. In next step, that is the information retrieval
phase, the KNN algorithm extracts relevant information
from the spatial data with the help of reduced R+ tree.
The detailed explanation of the processes is plotted in
the coming sections.

The reduced R+ tree for spatial data representation:
The issue of depiction of spatial data is one of the vital
challenges of the innovative technique. The cardinal
objective of the ambitious approach is invariably
targeted in representing the spatial data in R+ tree. The

Res. J. Appl. Sci. Eng. Technol., 10(2): 138-150, 2015

142

relevant task has to be completed without losing
significant data and by bringing down the number of
nodes. The decrease in the number of nodes has to be
integrated for the swift reclamation of data. The R+ tree
employed in the ground-breaking technique is an
innovative, reduced R+ tree, where all our attention is
focused on cutting down the number of nodes by
empowering a node to allow its maximum occupancy.
The building of the reduced R+ tree is exceedingly akin
to the creation of R+ trees. In effect, though the R+ tree
is an offshoot of R tree, it follows a dissimilar process
in probing and insertion of nodes, which makes it
vitally divergent from the R tree. Moreover, the big-
bang R+ tree envisages a unique process termed
partitioning, wherein the hassles posed by overlapping
in the case of R tree is effectively kept at bay.

Figure 1 represents a sample of R+ tree, which
possess bounding rectangles and partitions. Here A, B

and C are considered as the bounding rectangles or
minimum bounding rectangles. The partition of the R+
tree is represented using rectangle P. The minimum
bounding rectangle or MBR of R+ tree is defined as the
Rectangle that possess the minimum number of data
elements in it. The reduced R+ tree tries to minimize
the MBR and defines every bounding rectangle to be
built with maximum number of data points. The
reduced R+ tree give more concentration on the process
like searching and insertion. Consider Fig. 2.

Figure 2 characterizes the R+ tree generated for
Fig. 1. It illustrates that, the ultimate tree houses a
number of half-filled nodes. Therefore, when a probe is
intended to the R+ tree, it tends to consume further e
time to bring in data because the pointer has to be
routed along all the nodes. With a view to effective
address the menace, we set out to execute a unique
compression method, which cuts back the number of

Fig. 1: Rectangle representation of the R+ tree

Fig. 2: R+ tree for the Fig. 1

Fig. 3: Reduced R+ tree

Res. J. Appl. Sci. Eng. Technol., 10(2): 138-150, 2015

143

Fig. 4: Rectangle represented from the reduced R+ tree

nodes by directing the address of consecutive data
objects to the previous empty spaces of the prior nodes.
With the result, the above-discussed R+ tree takes a
new shape as Fig. 3.

Figure 3 shows the reduced R+ tree generated for
the represented Fig. 2. Through the compression, the
nodes in rectangles B and C are reduced to form a
single bounding rectangle Breduced.

Figure 4 represents the minimum bounding
rectangles of the reduced R+ tree. This picture reveals
that, there is a limited number of MBR to search for and
it is easy to point any data through search as compared
to the Fig. 1. Now, move on to the process of
constructing the reduced R+ tree. Similar to the otheR
trees used for spatial data representation, the R+ tree
also includes five major operations:

• Search

• Insertion

• Deletion

• Splitting the nodes

• Joining the nodes

The following section discusses the four process in
detail.

Searching data in reduced R+ tree: The probing
algorithm is analogus to the technique employed in R+
trees. The motive underlying the probe is to initially
decay the search space into disjoint sub-regions and for
each and every one of these, move down the tree until
the authentic data objects are located in the leaves. As
the nodes are decreased in reduced R+ tree, the probe
tends to be cost-effective with respect to the R+ trees.
The search in reduced R+ tree is shown below in Fig. 5.

Insertion on reduced R+ tree: Inserting a new

rectangle in an R+-tree is carried out by probing the tree

and supplementing the rectangle in leaf nodes. The

divergence with the analogous algorithm for R-trees is

that the input rectangle may be joined to more than one

leaf node, in view of the fact that it may be divided to

sub-rectangles along current partitions of the space. In

the long run, brimming nodes are divided and splits are

spread to parent as well as children nodes. The latter

has to be kept updated, as a split to a parent node may

bring in a space partition that influences the children

nodes also. The code for incertion is exhibited in Fig. 6

given below:

Deletion: Deletion of a rectangle from an R+-tree is
performed in the same way as in R-trees by initially
spotting the rectangle (s) to be subjected to the process
of deletion and thereafter steering clear of it (them)
from the leaf nodes. The underlying motive for
dispensation of multiple rectangles from leaf nodes is
that the insertion schedule envisaged earlier is likely to
bring in multiple copies for a newly inserted rectangle.
In the case of diminished R+ tree deletion is drawn in
the event of incidence of immaterial entry in the
generated R+ tree.

Splitting the nodes: In case a node overflows, there is

a necessity for certain splitting algorithm so as to

generate two new nodes. And it is highly essential that

the two sub-nodes cover up reciprocally disjoint

domains, we have to initially probe for a "good"

partition (vertical or horizontal) which eventually

decays the space into two sub-regions. This process is

generally known as Partition, which invariably issues a

clarion call for downward propagation of the split. Let

us for instance, consider in Fig. 2. We assume that A is

a parent node of B which, conversely, is a parent node

of C. Therefore, if node A has to be divided, it is

necessary that the lower level nodes B and C are also

Res. J. Appl. Sci. Eng. Technol., 10(2): 138-150, 2015

144

Fig. 5: Psuedocode for search in reduced R+ tree

Fig. 6: Insertion psuedocode

Fig. 7: Pseudo code for node splitting

Fig. 8: Psuedocode for joining node

Algorithm search:

Psuedocode for search in reduced R+ tree

Input: R+ tree

Output: All data objects including overlapped

Step 1: Select the top Node R, from R + tree

Step 2: If node N is not leaf, then

For all (P, R) of top node R check if next node overlaps W, search window.

Step 3: If so, Initiate Search (C, W, N), where C is the node that user pointed.

Step 4: If N is a leaf, check all objects R in O and return those that overlap with W.

Algorithm insert:
Insertion psuedocode
Input: R+ tree with input rectangle (IR)
Output: The new R+ tree with inserted point
Step 1: Select the node where IR goes and add
Step 2: If node N is not a leaf, then for each entry (p, R) of N,
Search for any overlapping
If overlap then, Insert (C, IR), C is the child node
Step 3: If N a leaf, add IR in R. If the entries into the rectangle is more the limit M,
the initiate Split Node () Function

Algorithm Split Node (N):

Input: A node N

Output: The new R+tree

Step 1: Find a partition and create two new nodes

Step 2: Find Partition on Rectangle X using the search method. P, be the pointer

associated with node R

Step 3: Create n1 = (p1, X1) and n2 = (p2, X2), the two nodes resulting from the split

of R, Where X1 and X2 are new sub rectangles

Step 4: Put in ni all nodes (pk, Rk) of O such that Rklies completely in Ri, for i = 1,

2. For those nodes that Rk, Ri

a) ifO is a leaf node, then put Rkin both new nodes

b) Otherwise, use Split Node to recursively split the children nodes along the

partition. Let (Pk1, Rk1) and (Pk2, Rk 2) be the two nodes after splitting (Pk, Rk),

where Rki lies completely in Ri, i = 1, 2. Add those two nodes to the corresponding

node ni.

Algorithm joining nodes (R-reduced):

Input: R+ tree with half-filled nodes

Output: Reduced R+ tree

Step 1: Let maxOccu MBR = n

Step 2: Check each MBR for maxOccuMBR

Step 3: For any MBR if (occuMBR<n)

 Select those MBRs;

Step4: If (MBRI&& MBRJ) has Less occupancy than maxOccuMBR

 Find distance (MBRI, MBRJ)

 If distance == Minimum

 Check,

occuMBR(MBRI)&&occuMBR(MBRJ)

 Then,

 Add point p from MBRI to MBRJ

Step 5: Add points from MBRI to MBRJ until,

 MBRI == Empty or MBRJ == fully filled

Step 6: Repeat 3 to 5 untill maximum nodes are fully filled

Step 7: End

Res. J. Appl. Sci. Eng. Technol., 10(2): 138-150, 2015

145

subject to the process of division. The pseudopodia

meant for node division is beautifully carved out in

Fig. 7 shown above:

Joining the nodes: The process of joining nodes trigger

after the R+ tree is built completely. The procedure will

search for half-filled and full filled nodes from the R+

tree. The half-filled nodes are selected and their empty

spaces are accounted. The nearest MBR are selected and

if both are half filled, we subject a joining function that

will add the nodes to one MBR to another until an MBR

gets completely filled or empty. In details, if MBR1

possess two data points and MBR2 possess 2 data

points. The condition is that the maximum data points

possessed by an MBR is 4. If MBR1 and MBR2 are

near, then data points from MBR2 is added to

MBR1.Finally MBR1 gets completely filled and MBR2

gets empty. So a MBR is reduced from the total

structure, this helps in easy data search and retrieval. If

MBR2 has three data points, the rest is added to another

near MBR, proved the nearest MBR is half filled.

The above Fig. 8 represents the psuedocode for

joining the nodes according to the MBR present.

Initially, we set the maximum occupancy of each MBR

as “n”. Then each MBR present is checked for

maximum occupancy and the MBRs with occupancy

less than n is selected for the joining node process.

Select MBRI and MBRJ, which has less occupancy than

maximum. We subject a distance calculation between

the MBRI and MBRJ and if the distance is minimum, the

points from MBRI is passed to MBRJ. Assuming that

MBRJ has more vacant space than MBRI. The process

continues till maximum nodes are completely filled.

Region queries handling: In the previous section, we

are discussing about the reduced R+ tree and the

application of algorithm to index spatial data and

retrieve data accordingly. So far the discussions are

through a point query based manner are just retrieving

the data based on a single value query. The main

challenge arises when a range of queries are subjected

to the system for retrieving the data. In this section we

discuss about how to handle range queries using the

proposed system.

MBR selection: The initial step in the process to map

the data based on the MBRs. As per the proposed

approach, we defined the Min_dist and Max-Min_dist

of the MBR with respect to a point in the problem

space. If the query is a single point, the Min_dist and

Max_min_dist can be easily calculated. When a range

of query is subjected, we have to represent the range as

a single value point in order to ease the calculation as

per the proposed approach. The idea is to find the

centroid of the range queries. So if there is a 100

queries are there in the input range query, we cannot

individually select each point and find its index from

Fig. 9: Point to MBR matching

our system. Thus a clustering algorithm is applied to
range values; simple k-means algorithm is the
algorithm we used, to represent the whole query as a
centroid. We initially, generate 3 clusters for every set
of queries and will subject three centroid values. Now,
we select the each centroid and calculate the Min_Dist
and Max_min_distance with respect to each MBR. The
MBR that possess least value for both will be selected
for the further process. The KNN query algorithm
accepts the centroid values as the input and proceeds to
the processing.

Figure 9 represents the process of matching each
point in the region based query in the desired Tree.
Each point Li in the region query is separately selected
and their distance to the MBR is calculated using the
MinDistAndMaxDist calculation. The MBR with
minimum distance for both MinDist and MaxMinDist is
selected and the region is assigned to the particular
MBR. The detailed process can be explained with help
of point query basis. The second step of the proposed
approach deals with query processing through KNN
algorithm. We test the program by giving points query
and process it with KNN algorithm. The idea behind the
approach is to extract nearest neighbors from the data
set corresponding to the given query. Since the spatial
data concerns with information regarding geographical
co-ordinates. The nearest neighbors constitute similar
characteristics. The proposed approach uses the KNN
algorithm for the process of extracting nearest
neighbors from the spatial database. The KNN
algorithm uses the reduced R+ tree for extracting the
nearest neighbors. The problem can be defined as, a
point query is subjected to the dataset and we need to
identify the K nearest neighbors to the given query.
Here, the K values is given from the user side and it is
the number neighbors need to be extracted. The main
object that KNN concentrate is the MBR of the reduced
R+ tree. Consider the following Fig. 10.

Figure 10 represents the scenario of point query
and the MBR in the problem space. Now in order to
extract the nearest neighbors of the point P(x,y), the
KNN algorithm is applied. The KNN defines two
parameters for finding the nearest neighbors from the
MBR.

Res. J. Appl. Sci. Eng. Technol., 10(2): 138-150, 2015

146

Fig. 10: MBR and point query

Fig. 11: MINDIST and MINMAXDIST

MINDIST: The parameters MINDIST is defined the

minimum distance between the point query P(x, y) and

an MBR R. If the point that is subjected as the query is

inside a Rectangle R then, the minimum distance value

between the point and rectangle will be zero. When the

point is outside the rectangle R, then the MINDIST

value will calculated as the distance between the point

P and any data point in the perimeter of the rectangle R.

i.e., MINDIST = distance (P, O).

Here, distance () is the function used for

calculating the distance between point P and data point

in the rectangle R. The distance function used for the

purpose will be the Euclidian distance.

MINMAXDIST: The parameter MINMAXDIST is

defined as the distance between the point P and object

furthest and closest phase of the rectangle R.

MINMAXDIST is the smallest possible upper bound of

distances from the point P to the rectangle R.

MINMAXDIST guarantees there is an object within the

R at a distance to P less than or equal to it. The

MINDIST and MINMAXDIST can be explained with

the help of Fig. 11.

Figure 11 represents the MINDIST and

MINMAXDIST with respect to two points P1 and P2.

The point P1 is outside the R1. So the distance between

P1 and data point in R1, O3 is considered as the

MINDIST between P1 and R1. The distance between

P1 and O2 is considered as the MINMAXDIST. The

case of P2 is different, because P2 is inside the

rectangle R2, so the MINDIST is zero and there is only

MINMAXDIST is taken into account. Note that, the

KNN will process only one point query at a time. When

a point query is subjected to the R+ tree, all the

MINDIST and MINMAXDIST will be calculated with

respect to the input query point. The KNN uses pruning

conditions to retrieve the nearest neighbors efficiently:

• An MBR R is discarded if there exists another R’
such that MINDIST (P, R) >MINMAXDIST(P, R’)

• An object O is discarded if there exists an R such
that ACTUALDIST (P, O) >MINIMAXDIST(P,
R)

• An MBR R is discarded if an object O is found
such that MINDIST (P, R) >ACTUAL_DIST (P,
O)

As per these pruning conditions, the relevant

rectangles are sustained and rest of the rectangles are

discarded. The nodes present in the sustained rectangles

are selected and the nearest neighbors are selected from

it according to the K value. The data points, which is

least distinct to the point query is selected and rest are

discarded:

NN (P) = Distance (P, Oi) →Minimum

Here, NN (P) represents the nearest neighbors of P,
Oi represents the data points in the sustained rectangles.
The value of “i” varies from 1 to n, n is the total
number of data points available. Similar to the above
explanation of point query, each point in the region
query follows these steps and they it will be assigned to
MBR, which possess average minimum distance. Now
with the help of MBR, we construct the reduced R+ tree
so as to minimize the number of nodes. The process
executed in the selection of MBR helps the proposed
approach to minimize the number of nodes because a

Res. J. Appl. Sci. Eng. Technol., 10(2): 138-150, 2015

147

region in the spatial data is plotted to the nearest MBR
without overflow. The MBR is selected in such way
that, the process check whether the MBR is fully filled
or partially filled. The MBR is selected only if it is
partially filled. The partially filled MBR is then selected
and populated with the points in the region query and if
the MBR exceeds the capacity and data points in the
region query is left behind. Then another nearest MBR
is selected and it is populated with the rest of the data.

EXPERIMENTAL RESULTS AND ANALYSIS

The working and detailing of the proposed

approach is plotted in the prior section. In this section,
we discuss about the experimental analysis of the
proposed approach. A spatial dataset is given to the
proposed approach and the responses of the proposed
approach is recorded to evaluate the performance.

Experimental set up: The proposed approach is
programmed in java program with JDK 1.7.0. The
system used for developing the program uses anIntel
core i5 processor, 500GB hard disk and 3GB of RAM.
The dataset used for the proposed approach is a spatial
data set with more than 1000 data points. The datasets
are classified into 5 groups and tested with the proposed
approach. The dataset is divided into groups like 200,
400, 600, 800 and 1000. The dataset is supplied to both
R+ tree and reduced R+ tree for evaluation purposes.
The detailed evaluation of the proposed approach is
plotted in the following section. We are using two
dataset from the spatial data repository
(Spatialkey, 2012) and processed the database as
explained above.

Performance analysis: In this section, we plot the

performance of the proposed R+ tree algorithm aided

with KNN for extracting the neighbors. The

performance of the proposed approach is processed in

terms of the parameters like computation time, retrieval

time and node generated. The two dataset downloaded

are selected for the evaluation purposes. The

computation time represents the time required to run the

whole process. The retrieval time deals with time

required to retrieve the nearest neighbors through the

give query based on proposed algorithm. The

performance is evaluated as a comparison to the

existing R+ tree based method.

Performance based on computation time: Initial the

datasets are labeled as dataset 1 and dataset 2. There

datasets are supplied to the R+ tree based method and

reduced R+ tree based method. The total time required

to represent the total data points into the R+ tree and

reduced R+ tree is plotted below. The both datasets are

reduced to 1000 data point and are divided into five

groups as mentioned above. Here, the computation time

obtained for five different data records for both the

proposed reduced R+ tree and the existing R+ tree is

Table 1: Computation time dataset 1

Data records R+ tree Reduced R+ tree

200 1087 854

400 1158 890
600 1378 901

800 1388 910

1000 1476 914

Table 2: Computation time dataset 2

Data records R+ tree Reduced R+ tree

200 13724 11241
400 12475 11800

600 13547 12001

800 14251 12009
1000 15374 12900

Table 3: Retrieval time from dataset 1

Data records R+ tree Reduced R+ tree

200 220 180
400 325 195

600 360 202

800 496 256
1000 524 302

Table 4: Retrieval time from dataset 2

Data records R+ tree Reduced R+ tree

200 620 540

400 725 590

600 788 620
800 801 645

1000 901 711

tabulated above in Table 1 for dataset 1 and in Table 2

for dataset 2.

Figure 12 and 13 represents the performance of the

proposed approach in terms of dataset 1 and dataset 2.

The analysis from the fig shows that at every level the

proposed reduced R+ tree algorithm has the upper hand

in computation time. This implicate that the time

required for indexing the data points in reduced R+ tree

is less than that of the traditional R+ tree method. The

reduced R+ tree has consumed indexing time for the

peak level of data is only 914 ms for dataset 1 and

12900 ms for dataset 2. Even though the numbers of

data points are same there is huge difference between

the computation times of the datasets. The reason

behind that is the data, which is possessed by both

datasets. The analysis from the figs shows that as the

number of data increases, the computation time

increases in both cases. The difference time represents

the effectiveness of the proposed approach over

traditional R+ tree.

Performance based on retrieval time: The retrieval

time deals with the time required to retrieve nearest

neighbors by the KNN algorithm from the indexed tree

upon giving the input query. The same datasets are used

in this process also, so we can have a clear record on

the performance of the proposed approach. For the both

dataset 1 and dataset 2 the retrieval obtained for the

proposed reduces R+ tree and existing R+ tree for five

different data records are tabulated in Table 3 and 4.

Res. J. Appl. Sci. Eng. Technol., 10(2): 138-150, 2015

148

Fig. 12: Computation time of dataset 1

Fig. 13: Computation time for dataset 2

Fig. 14: Retrieval time from dataset 1

Figure 14 and 15 represents the retrieval time

consumed by the proposed R+ tree and conventional

R+ tree. The KNN algorithm is applied after indexing

the data with conventional R+ tree and reduced R+

tree. So the responses are plotted in the above depicted

figs. The analysis from the figs shows that retrieval

time is considerable low for the reduced R+ tree based

method as compared to conventional R+ tree based

Fig. 15: Retrieval time from dataset 2

Fig. 16: Number of nodes

Table 5: Number of nodes

Data records R+ tree Reduced R+ tree

200 72 70

400 148 145
600 251 250

800 282 280

1000 324 316

method. The proposed approach has achieved an

average retrieval time of 227 ms for dataset 2 and 621.2

ms for dataset 1, while the conventional R+ tree based

method achieved about 767 ms for dataset 2 and 400 ms

for dataset 1.

Number of nodes: The number of nodes obtained for

both the proposed reduced R+ tree and existing R+ tree

for different data records are tabulated in Table 5.

Figure 16 represents the number of nodes possessed

by R+ tree and Reduced R+ tree after indexing the data

points. As per the name states, the proposed approach

has less number of nodes with respect to the

conventional R+ tree. We can see a remarkable

difference in the number of nodes between the two

algorithms. The conventional R+ tree requires about

324 nodes for representing 1000 data points while the

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

C
o

m
p
u

ta
ti

o
n

 t
im

e
 (

m
s)

200 400 600 800 1000

Data records

R+tree

Reduce R+tree

Res. J. Appl. Sci. Eng. Technol., 10(2): 138-150, 2015

149

reduced R+ tree takes about 316 nodes. The analysis

can be accounted that the proposed approach also index

similar number of nodes as compared to the R+ tree.

The advantage of the proposed approach is terms of

retrieval time and computational time. The process is

conduced setting a limit of 4 data points as the

maximum occupancy of a node. The remarkable

difference number of nodes possessed by reduced R+

tree is because of eliminating the empty spaces in the

nodes. The depicted image uses the dataset 2 for the

purpose of counting number of nodes.

CONCLUSION

In this study, a method is plotted for retrieving

nearest neighbors from spatial data indexed by R+ tree.

The approach uses a reduced R+ tree for the purpose of

representing the spatial data. Initially the spatial data is

selected and R+ tree is constructed accordingly. Then a

function called joining nodes is applied to reduce the

number of nodes by combining the half-filled nodes to

form completely filled. The idea behind reducing the

nodes is to perform search and retrieval quickly and

efficiently. The reduced R+ tree is then processed with

KNN query algorithm to fetch the nearest neighbors to

a point query. The basic procedures of KNN algorithm

are used in the proposed approach for retrieving the

nearest neighbors. The proposed approach is evaluated

for its performance with spatial data and results are

plotted in the experimental analysis section. The

experiments showed that the number of nodes

possessed by reduced R+ tree is remarkably lower than

that of the conventional R+ tree. The proposed

approach is efficient in terms computation time and

retrieval time also.

REFERENCES

Achakeev, D. and B. Seeger, 2012. A class of R-tree

histograms for spatial databases. Proceeding of the

20th International Conference on Advances in

Geographic Information Systems (SIGSPATIAL

'12), pp: 450-453.

Ashton, K., 2009. That ‘Internet of Things’ thing. RFID

J., 22(2009): 97-114.

Butenuth, M., G. Gsseln, M. Tiedge, C. Heipke, U.

Lipeck and M. Sester, 2007. Integration of

heterogeneous Spatial data in a federated

database. ISPRS J. Photogramm., 62(5):

328-346.

Calì, A., D. Lembo and R. Rosati, 2003. Query

rewriting and answering under constraints in data

integration systems. Proceeding of the International

Joint Conference on Artificial Intelligence, pp:

16-21.

Chong, E.I., J. Srinivasan, S. Das, C. Freiwald, A.

Yalamanchi, M. Jagannath, A.T. Tran, R. Krishnan

and R. Jiang, 2003. A mapping mechanism to

support bitmap index and other auxiliary structures

on tables stored as primary B
+
-trees. SIGMOD

Rec., 32(2): 78-88.

Corral, A. and J. Almedros-Jimenez, 2007. A

performance comparison of distance-based query

algorithms using R-trees in spatial databases.

Inform. Sciences, 177(11): 2207-2237.

Cuzzocrea, A. and A. Nucita, 2011. Enhancing

accuracy and expressive power of range query

answers over incomplete spatial databases via a

novel reasoning approach. Data Knowl. Eng.,

70(8): 702-716.

Doytsher, Y., B. Galon and Y. Kanza, 2012. Querying

socio-spatial networks on the world-wide web.

Proceeding of the 21st International World Wide

Web Conference (WWW). Lyon, France, pp:

329-332.

Gaede, V. and O. Gunther, 1998. Multidimensional

access methods. ACM Comput. Surv., 30(2):

170-231.

GEOMAPP, 2010. Retrieved from: www.geomapp.net.

Guttman, A., 1984. R-trees: A dynamic index structure

for spatial searching. Proceeding of the ACM

SIGMOD International Conference on

Management of Data. Boston, Massachusetts, pp:

47-57.

Ives, Z.G., D. Florescu, M. Friedman, A. Levy and D.S.

Weld, 1999. An adaptive query execution system

for data integration. Proceeding of the ACM

International Conference on Management of Data,

pp: 299-310.

Jagadish, H.V., B.C. Ooi, K.L. Tan, C. Yu and R.

Zhang, 2005. iDistance: An adaptive B
+
-tree based

indexing method for nearest neighbor search. ACM

T. Database Syst., 30(2): 364-397.

Kim, J.H., Y.H. Kim, S.W. Kim and S.H. Ok, 2002. An

efficient processing of queries with joins and

aggregate functions in data warehousing

environment. Proceeding of the 13th International

Workshop on Database and Expert Systems

Applications. Aix-en-Provence, France, pp:

785-794.

Kollios, G., D. Gunopulos and V.J. Tsotras, 1999. On

indexing mobile objects. Proceeding of the 18th

ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems (PODS’99), pp:

261-272.

Lai, L., Z. Liu and L. Yan, 2002. K-nearest neighbor

search algorithm by using R-tree. Comput. Eng.

Des., 23(9).

Lin, H.Y., 2010. Efficient and compact indexing

structure for processing of spatial queries in line-

based databases. Data Knowl. Eng., 64(1):

365-380.

Res. J. Appl. Sci. Eng. Technol., 10(2): 138-150, 2015

150

Liu, Y., Z. Zhu and S. Shi, 2001. A new space k-nearest
neighbor query strategy. J. Shanghai Jiao Tong
Univ., 35(9).

Liu, Y., S. Bo, Q. Zhang and Z. Hao, 2004. Multi-
object nearest neighbor queries. Comput. Eng.,
30(11): 66-68.

Papadias, D. and Y. Theodoridis, 1997. Spatial
relations, minimum bounding rectangles and
spatial data structures. Int. J. Geogr. Inf. Sci.,
11(2): 111-138.

Papadopoulos, D., G. Kollios, D. Gunopulos and V.J.
Tsotras, 2002. Indexing mobile objects on the
plane. Proceedings of the 13th International
Workshop on Database and Expert Systems
Applications (DESA’02), pp: 693-697.

Shekhar, S. and S. Chawla, 2003. Spatial Databases: A
Tour. Prentice-Hall, New Jersey.

Spatialkey, 2012. Retrieved from: http://support.

spatialkey.com/spatialkey-sample-csv-data/.

Tang, J., Z.B. Zhou and Q. Wang, 2012. K-NN query

algorithm based on PB-tree with the parallel lines

division. Commun. Mobile Comput., 1(1): 1-10.

Taniar, D. and J.W. Rahayu, 2003. Global B
+
-tree

indexing in parallel database systems. Lect. Notes

Comput. Sc., 2690: 701-708.

Yanagisawa, Y., J. Akahani and T. Satoh, 2003. Shape-

based similarity query for trajectory of mobile

objects. Proceeding of the 4th International

Conference on Mobile Data Management.

Melbourne, Australia, pp: 63-77.

