
Research Journal of Applied Sciences, Engineering and Technology 10(3): 293-297, 2015
DOI: 10.19026/rjaset.10.2490
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2015, Maxwell Scientific Publication Corp.

Submitted: December 20, 2014 Accepted: February 8, 2015 Published: May 30, 2015

Corresponding Author: D. Manikavelan, Department of Computer Science and Engineering, Sathyabama University, Chennai,

India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

293

Research Article
Improvised Analogy based Software Cost Estimation with Ant Colony Optimization

1
D. Manikavelan and

 2
R. Ponnusamy

1
Department of Computer Science and Engineering, Sathyabama University,

2
Rajiv Gandhi College of Engineering, Chennai, India

Abstract: The aim of this study is to provide an efficient methodology in estimating project development cost using

analogy. Cost estimation is one of the greatest challenges in software industry to be successful enough in delivering

a project within the schedule and with quality. In most cases, the delivered product either loses out on the quality or

the expected timeline, owing to improper and imprecise estimation of the project cost. Deriving near accurate

project cost could be done using analogy, wherein previous project data set is manipulated to arrive at the accurate

cost for the current project. Ant Colony Optimization (ACO) technique implemented over analogy provides a better

solution to overcome the challenges faced during cost estimation. In our study, we follow a three step methodology,

based on ACO to arrive at the project development cost from promised datasets. Firstly, we extract the matching

projects from data set based on the nearest values of a parameter. Secondly, we identify and group projects based on

sizing. Thirdly, we improve similarity measures to match our project against those in data set.

Keywords: Analogy, ant colony optimization, cost estimation, line of code, measurement error

INTRODUCTION

The practice of effort estimation is critical during

software development. Without accurate estimates,
project managers cannot set realistic goals for software
delivery dates nor can they staff their projects in an
efficient and optimal way. Software effort estimation
can be done through two major approaches: estimates
based on formal models such as the constructive cost
model and function points or estimates based on
analogy where the process of generating an estimate is
based largely on past experience, expert judgments,
Parkinson’s law. Constructive Cost Model is an
algorithmic software cost estimation model which was
developed by Barry (1981). It uses a basic regression
formula with parameters that are derived from historical
project data. Limitations of COCOMO are that it
ignores hardware issues and personnel turnover levels.
Functional Point Analysis is an ISO recognized method
to measure the functional size of an information system.
It was developed by Albrecht (1979). The limitation of
functional point is that it is performed after the creation
of design specifications. The oldest metric for software
projects is that of “Lines of Code” (LOC). This metric
was first introduced in 1960 and was used for
economic, productivity and quality studies. The
limitation is lack of accountability and developer
experience, Putnam's 78, SLIM is the first algorithmic
cost model. It is based on the Norden/Rayleigh function
and generally known as a macro estimation model (for

large projects). Limitation is that estimates are
extremely sensitive to the technology factor and not
suitable for small projects. Estimation by analogy
means creating accurate estimation for the proposed
project by comparing the proposed project to similar
projects. Lots of new research is being done on
analogy, exploiting the essential assumption of Analog-
Based effort Estimation (Kocaguneli et al., 2012) in this
study proposed an approach to design TEAK using an
easy path principle in order to avoid the computational
cost of tools. Visual comparison of Software Cost
Estimation model by regression error characteristic
Analysis (Mittas and Angelis, 2010) in this study
introduced (REC) Regression Error Characteristic
which is a powerful visualization tool having
interesting geometrical properties in order to easily
compare and validate the different prediction models.
The adjusted Analogy-Based Software effort
Estimation based on Similarity (Chiu and Huang, 2007)
in their article proposed an estimation model by
adopting GA method used to adjust an effort based on
similarity distance. Providing Statistical Inference to
Analogy-Based Software cost estimation (Keung et al.,
2008). In this study used the strength of correlation
between the distance matrix of project features and the
distance matrix of known effort values of data. Active
Learning and Effort Estimation: Finding the Essential
Content of Software Effort Estimation Data
(Kocaguneli et al., 2013), In this study Software Effort
Estimation data can be reduced to small essential

Res. J. Appl. Sci. Eng. Technol., 10(3): 293-297, 2015

294

Table 1: Promised dataset comparison of COCOMO and functional point

S. No. KLOC People Effort Time COCOMO (organic) Functional point

1 218 25 4110.20 228.34 1.05 684.840 650.60 0.012 941.76 33.73

2 101 15 6219.95 345.55 1.05 305.310 290.05 0.012 436.32 25.18
3 116 11 9200.06 511.13 1.05 353.090 335.44 0.012 501.12 26.54

4 116 8 8477.57 470.97 1.05 353.090 335.44 0.012 501.12 26.54

5 108 13 7139.35 396.63 1.05 327.570 311.19 0.012 466.56 25.83
6 95 6 13382.31 743.47 1.05 286.290 271.98 0.012 410.40 24.60

7 52 5 9073.86 504.10 1.05 152.050 144.45 0.012 224.64 19.56

8 190 19 14123.79 784.65 1.05 592.790 563.15 0.012 820.80 32.01
9 112 12 10534.59 585.25 1.05 340.320 323.30 0.012 483.84 26.18

10 27 3 3855.46 214.19 1.05 76.408 72.58 0.012 116.64 15.25

11 384 23 19315.65 1073.12 1.05 1240.960 1178.90 0.012 1658.80 41.82
12 55 17 8170.75 453.98 1.05 161.280 153.22 0.012 237.60 19.98

13 127 15 6476.65 359.79 1.05 388.330 368.91 0.012 548.64 27.47

14 159 9 19046.30 1058.13 1.05 591.670 467.09 0.012 686.88 29.92
15 256 28 15391.82 855.11 1.05 810.700 770.17 0.012 1105.90 35.85

content and the simple methods are still able to perform
well on the essential content, Table 1, presents the data
collected from the promised dataset. The original
dataset contains data 106 data with 94 attributes; here
we have worked out on 15 data with 4 attributes such as
KLOC, people, effort and time for generating sample
input and output. All the projects we implemented three
estimation techniques and found various outputs. This
output is not similar to one to one. The main reason is
COCOMO model helped to estimate the project at early
stage but functional point model is not like that.

METHODOLOGY

ACO is a methodology involving computing that

exhibits an ability to gain knowledge and deal with new

situations, such that the system is perceived to own one

or more attributes of reason, such as generalization,

finding, association and abstraction. Particle Swarm

Optimization (PSO) is a computational method that

optimizes a problem by iteratively trying to improve a

candidate solution with regard to a given measure of

quality. ACO is a technique for solving computational

problems by providing the approach to resolve a

problem by the shortest path. Our approach is a member

of the ACO family, which is in swarm intelligence

methods and consist of metaheuristic optimization. The

aim of the first algorithm is to search for an optimal

path in a graph, based on the behavior of ant travels in

the path from the source to the destination. ACO

algorithm has been applied on many combinatorial

optimization problems.

In natural world, ants moves randomly, to find the

food and return to their colony while laying

down pheromone trails. Other ants find such a way,

based on the pheromone concentration deposited on the

path. They are likely not to keep travelling at random

instead follow the trail, to reach the food destination.

The equation one represents that to find the shortest

path:

� = �������	
�
� (1)

However, when the pheromone trail starts to
evaporate, the path reduces its attractive strength by the
ant. The more time it takes for an ant to travel down the
path and back again, the more time the pheromones
have to evaporate. In the shorter path, the pheromone
density becomes higher than the longer ones. If there
were no evaporation at all, the paths chosen by the first
ants would tend to be excessively attractive to the
following ones. The Eq. (2) and (3) helped to find the
pheromone concentration which is deposited on the
path can be calculated using the formula:

ℎ =
�������	� � �

��������
�

�����	

����! �"���� #$�����%� (2)

where,

&' = %� �� #��(�)��∗+#,���)�%���%�
#$�����%� �-�#������% �.	 (3)

TSP = Total system pheromone

When one ant finds a good path from the colony to

reach the food source, other ants are more likely to

follow that path and positive feedback eventually leads

to all the ants following a single path. The idea of ant

colony algorithm is to mimic this behavior with

"simulated ants" walking around the graph and

obtaining the best solution.

Analogy technique has a major role in estimation

in which they compare previous projects’ data with the

proposed project to have better solutions for all

challenges encountered during software cost estimation.

Analogy based cost estimation takes us through lots of

ambiguities while trying to pick up and match between

our project and that project in the data set. There are

two different matching techniques we could choose to

implement for our project, namely, probabilistic

matching and sematic matching. Probabilistic matching

is a statistical analysis based technique to determine the

overall probability value using more than one record.

Semantic matching is a technique used to identify

similarity between projects based on semantics. From

Res. J. Appl. Sci. Eng. Technol., 10(3): 293-297, 2015

295

Fig. 1: ACO analogy architecture diagram

analysis, we find that sematic matching does not
produce accurate results because of it’s related to
ontology matching. Probabilistic matching technique on
the other hand, helps overcome human errors that occur
during dataset retrieval. ACO is a technique based on
probabilistic matching where statistical reports are
derived/present for each data in the data set. Using this
probabilistic value, we arrive at the exact value with the
help of ACO.

Figure 1 explains that each dataset contains 70
projects and each project contains more number of
attributes. ACO Data filter collects the requirements
from requirement specification and filter the projects
from data set based on two parameters:

• Domain name

• KDSI

ACO path finder helps to group projects based on
sizing. Pheromone value improves the degree of
similarity measure and helps to find the nearest
matching data. The proposed algorithm as follows:

Step 1: Read data from dataset which are not null.
Step 2: Assign a variable for relevant parameters in the

data.
Let a be effort
Let b be time
Let α, β and γ be a positive constant
Let � be percentage of pheromone
concentration
Let c be the number of projects taken from
dataset for our study.

Step 3: Arrive at the feasible path which is used to

choose data from dataset that matches Current

project using the formula from Eq. (1).

Example: Applying the values effort = 3855.46

complexity = 3 time = 214.19 KDSI = 27:

� = �������	
�
� = � = ����/011.34�563.67	
5

58

= 182.1635

Step 4: Arrive at the percentage of pheromone

concentration ‘ph’ using the formula from
Eq. (2) and (3) TSP = 350. α = 1 β = 2.5 γ = 3.

Example: Applying values on 3.2, effort = 3855.46
complexity = 3 time = 214.19 KDSI = 27:

ℎ = �/011.34	�� �
�9�

�.:
�563.67	9

/18

We find (based on ACO technique), from Table 2

that minimum path value and maximum value for
pheromone have optimal values for effort, time and
people.

RESULTS AND DISCUSSION

Analogy based cost estimation is the technique

used at early stages of estimation. Sometimes analogy

fails at early stage of estimation itself for reasons like

assumption error, measurement error and skill of

estimator. Our study here helps to minimize the

assumption and measurement error. Using evolution

criteria we define the following three steps, complete

analogy based estimation will satisfy these three steps:

Step 1: Find the nearest project effort value with the

help of ACO path value.

Step 2: Identify and group projects based on sizing.

Step 3: Improve similarity measure and extract the

correct project from our requirements.

Step 1 and 2 helps resolve measurement error and

step 3 help minimize the assumption error.

Step 1: Identify and group projects based on sizing:

Grouping the project from dataset is not easy because

each project contains 72 attributes and all the attributes

are related to one another. Two important parameters

justify grouping, namely, domain name and size of the

project. We collect appropriate values for KLOC and

domain from business requirement specification based

Table 2: Eliminated data using ACO algorithm

KLOC People Effort Time Path

116 11 9200.06 511.13 434.5465

116 8 8477.57 470.97 400.4300

108 13 7139.35 396.63 337.2360

112 12 10534.59 585.25 497.5670

55 17 8170.75 453.98 385.9385

127 15 6476.65 359.79 305.9430

Res. J. Appl. Sci. Eng. Technol., 10(3): 293-297, 2015

296

Table 3: Retrieve the path and pheromone values

KLOC No. of people Time (b) Path (p) Pheromone (ph)

101 15 345.55 293.8200 0.003772478

116 11 511.13 434.5465 18.492339180
116 8 470.97 400.4300 2413.143561000

108 13 396.63 337.2360 0.209542659

95 6 743.47 632.0420 479516.387000000
52 5 504.10 428.5880 573322.751500000

190 19 784.65 667.0570 9.79459E-05

112 12 585.25 497.5670 5.619193540
384 23 1073.12 912.2265 3.34627E-07

55 17 453.98 385.9385 0.000351180

127 15 359.79 305.9430 0.004434093
159 9 1058.13 899.5085 10868.879070000

256 28 855.11 726.9355 2.3291E-11

Fig. 2: Relationship between KLOC and path

on expert opinion. Some grouping algorithm fails

because grouping data are not directly based on a

grouping algorithm. ACO grouping technique helps

group the project based on sizing using path and

pheromone values. Following steps are involved in

ACO grouping:

• Read the input data from dataset which are not

null.

• Check each KLOC value is assigned path and

pheromone values.

• Referring Table 1, set boundary value for KLOC

as, upper boundary value and lower boundary

value.

In our case, where KLOC = 27, we set 127 as the upper

boundary value (27+100) and 27-100 being the lower

boundary value So that the output will be the

represented in Table 2.

Table 2 shows that using ACO algorithm and based

on requirement we have eliminated unrelated data from

Table 1. Collected requirement data from business

requirement specification we have to match the data

from dataset and extract the correct project with path

value. We identified the similar projects addition and

subtraction of boundary value 100 with path value.

These values displayed in Table 2 and we can find the

duplicate projects with various path values easily.

Through Fig. 2 we understand and conclude that

KLOC and path are directly proportional.

Step 2: Improving similarity measure and extract

the correct project from our requirements: Finding

the similarity measure plays on important role in

analogy cost estimation. Each project contains more

than 72 attributes; we can hence not find the similarity

measure easily after finding the similarity projects

using 72 attributes. It’s very difficult to find maximum

and minimum values in the projects.

Steps followed to arrive at similarity measure:

1. Read the input data
2. Retrieve the similar projects based on KLOC and

domain
3. If (Input KLOC value = = similar project)
 {
 Retrieved project = choose the minimum path

value row or max pheromone value row
 }

In ACO algorithm follows the concept of when the
path value is low it follows the pheromone values is
high use this concept and implemented in similarity
measure algorithm. If the value of KLOC matches a
similar project from Table 3 then we can choose to go
with the project that has minimum for pheromone.

Step 3: Finding the nearest project effort value with the

help of ACO path value.

Data availability is important parameter for
analogy estimation. Some estimators skip the analogy
estimation at early stages because of data unavailability.
Data available in projects we classified two types, first
one requirement data is not available in dataset, we
can’t handle this situation secondly requirement is
available in dataset not exactly related to that but We
can handle this situation. Finding the nearest project
based on close surrounding of path value related to
requirement path. So we identify the related project
information.

CONCLUSION

Early stage estimation plays a vital role in industry

because the estimation if not accurate. Sometimes

Res. J. Appl. Sci. Eng. Technol., 10(3): 293-297, 2015

297

overestimation leads to lose the project at biding time

or under estimation leads to project failure. In order to

avoid this situational we improve the quality of analogy

with the help of ACO. Our study here helps to solve

common errors like measurement error and data

unavailability. Using analogy In future we will

minimize the estimator knowledge error and The

project is going to be implemented in any of the CMM

level 5 companies. Based on the expert’s feedback we

will minimize the errors.

REFERENCES

Albrecht, A.J., 1979. Measuring application

development productivity. Proceeding of the Joint

SHARE, GUIDE, and IBM Application

Development Symposium. Monterey, California,

October 14-17, IBM Corporation 1979, pp: 83-92.

Barry, B., 1981. Software Engineering Economics.

Prentice-Hall, Englewood Cliffs, NJ, ISBN: 0-13-

822122-7.

Chiu, N.H. and S.J. Huang, 2007. The adjusted

analogy-based software effort estimation based on

similarity distances. J. Syst. Software, 80(4):

628-640.

Keung, J.W., B.A. Kitchenham and D.R. Jeffery, 2008.

Analogy-X: Providing statistical inference to

analogy-based software cost estimation. IEEE

T. Software Eng., 34: 471-484.

Kocaguneli, E., T. Menzies, A. Bener and J.W. Keung,

2012. Exploiting the essential assumptions of

analogy-based effort estimation. IEEE T. Software

Eng., 38(2): 425-438.

Kocaguneli, E., T. Menzies, J. Keung, D. Cok and

R. Madachy, 2013. Active learning and effort

estimation: Finding the essential content of

software effort estimation data. IEEE T. Software

Eng., 39(8): 1040-1053.

Mittas, N. and L. Angelis, 2010. Visual comparison of

software cost estimation model by regression error

characteristic analysis. J. Syst. Software, 83(4):

621-637.

