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Abstract: The aim of this study is to present a novel approach which uses Java Expert System Shell (JESS) to 
intelligently infer the best and most relevant Web service. Since the Web Service has developed as a service 
provider in all areas, the Service discovery has become indispensable as Web Service discovery algorithms return 
more than one Web Service with same functionalities. Generally, the functional properties of the Web Services, such 
as Input, Output, Precondition, Effects (IOPE) are considered in the composition phase whereas the non-functional 
properties, namely Quality of Service (QoS) parameters are used in selecting the most appropriate Web Service. 
User Rule-based searching is accomplished along with users’ preferences which map the rules of the user profile 
into JESS script to discover the desired Web Service. As a result of our research we support developers to combine 
and implement the Web Service description and discovery approaches that will ensure best and most relevant 
service and performance of service oriented architecture. 
 
Keywords: Java expert system shell, quality of service parameters, service oriented architecture, web service 

discovery 

 
INTRODUCTION 

 
Service discovery is part of the service-oriented 

architecture and the current approaches for Web 
Services discovery is by providing semantic layer on 
Web Service standard components such as WSDL (Erik 
et al., 2001) and UDDI registry (Luc et al., 2004), 
which only supported keyword search. Web Service 
discovery becomes semantic search which alleviates the 
limitations in keyword search values in UDDI. For 
Semantic Web Service annotation, OWL-S coalition 
has promoted Ontology Web Languages for Services 
(OWL-S) (David et al., 2004), with rich semantic 
annotations. There are many works which have been 
proposed towards the Semantic web Service discovery. 
In this study the rule based inference engine namely 
JESS (Friedman-Hill, 2007) is effectively used along 
with the user profile of the customer for service 
discovery. A large number of rule engines are available 
as open source software. Some of the most popular 
engines include JESS, Algernon, Sweet Rules and 
Bossam. We chose JESS a forward-chaining rule 
engine, as the rule engine for the service discovery 
based on the QoS. JESS works seamlessly with Java 
and is very easy to use and configure. Each Jess rule 
engine holds a collection of knowledge nuggets called 
facts. Every fact has a template. The template has a 
name and a set of slots and each fact gets these things 
from its template (Friedman-Hill, 2007). 

LITERATURE REVIEW 
 

Recently, QoS-aware Web service Discovery is an 
active research issue both in industry and academia that 
attracts a lot of researchers. Many studies have been 
carried out and several approaches have been proposed 
for this problem. Yang et al. (2008) proposed Java 
Expert System Shell (JESS)-enabled context elicitation 
system featuring an ontology-based context model that 
formally describes and acquires contextual information 
pertaining to service requesters and Web services. 
Based on the context elicitation system, we present a 
context-aware services-oriented architecture for 
providing context-aware Web service request, 
publication and discovery. Gunasri and Kanagaraj 
(2014) proposed a Semantic web service discovery 
framework for finding semantic web services by 
making use of natural language processing techniques 
and clustering method. By make use of natural 
language processing used keyword matching with 
context of service description. It has accurate matching 
because Word net gives an exact sense for a particular 
web service domain and cluster Terms we can improve 
the optimization and eliminating irrelevant services and 
gives accurate service discovery. Aklouf and Rezig 
(2009) proposed approach exploits expert systems that 
aim at adding new functionalities to Web services 
according to their rule-base defined by the knowledge 
engineer or the system administrator using an ontology. 
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Kritikos and Plexousakis (2009) present a QoS in the 
context of WSs. Its main contribution is the analysis of 
the requirements for a semantically rich QoS-based 
WSDM and an accurate, effective QoS-based WS 
Discovery (WSDi) process. In addition, a road map of 
extending current WS standard technologies for 
realizing semantic, functional and QoS-based WSDi. 
Finding an appropriate and best service from a group of 
services with the same functionality is a service 
selection challenge (Liangzhao et al., 2004; Maximilien 
and Singh, 2004; Mukhopadhyay and Chougule, 2012; 
Nair and Gopalakrishna, 2010). Therefore, besides the 
functionalities of web services, nonfunctional attributes 
(QoS) are also important in service discovery. In order 
to meet users’ functional and non-functional 
requirements in service discovery, many QoS-based 
methods have been proposed (Harshavardhanan et al., 
2012; Torres et al., 2011). 

Gouscos et al. (2003) classifies QoS attributes as a 

static and a dynamic group. For example, price, 

promised response time and probability of failure are 

static attributes stored in UDDI. On the other hand, 

actual response time and failure rate are stored in 

WSDL, or provided by an information broker. This 

method is quite easy and straightforward, but cannot 

solve the problem caused by obsolete and out-of-date 

QoS information. Ran (2003) proposes an extended 

UDDI model which involves a new role, namely a web 

service QoS Certifier, in a traditional SOA model. It 

consists of three roles (service providers, service 

requesters and UDDI registry). This verifies whether 

the quality of a service is the same as the service 

provider promised before registering the service in 

UDDI. Thus, a service consumer can first issue a query 

to the web service QoS Certifier to verify the QoS of a 

target service. However, this does not provide a reliable 

algorithm to validate the credibility of claimed QoS. It 

is unable to assure the correctness of real QoS when 

web services are changed or updated in the future. 

Huang et al. (2009) proposes a three-stage service 

selection scheme based on different types of QoS such 

as functional matchmaking, text-based QOS 

matchmaking and numeric-based QoS matchmaking. In 

a text-based QoS matchmaking stage, keyword search 

and service category search are provided by UDDI. 

There are two scenarios in a stage of numeric-based 

QoS matchmaking: single QoS-based service discovery, 

which selects the service with the best QoS attributes 

for users and QoS-based Optimization, which selects 

the service with the best performance in an entire 

workflow. Al-Masri and Mahmoud (2007) proposed a 

Web Service Repository Builder (WSRB) framework. 

In this framework, a Web Service Crawler Engine 

(WSCE) sends multiple queries to several UDDI 

registry centers, according to users’ requests and then 

gets all the QoS results. The QoS of services with the 

same  functionality  will  be  stored  in  a  matrix and all 

QoS attributes are then normalized. The ranking scores 

for each service will be computed by a weighted sum of 

the value of QoS attributes, where the weighting for 

each attribute is determined by a user according to 

his/her preferences. Lin et al. (2014) proposed a 

trustworthy two-phase service discovery algorithm 

based on collaborative filtering and QoS in order to 

recommend good services from the same functional 

service group to users. The recommendation process, 

can verify the correctness of QoS for web services. 

Therefore, the recommended services not only meet 

users’ functional requirements, but also have correct 

QoS information. Liu et al. (2012) proposed Branch 

and Bound for Execution Plan Selection (BB4EPS) 

algorithm that creates a plan for service composition 

using the aggregated affect of the QoS attributes. The 

aggregation is studied for services connected in 

different structures/patterns. Both availability, 

reliability is studied separately and their combined 

effect is not evaluated. Liu et al. (2013) proposed a 

model the QoS-aware service composition problem as a 

conventional combinatorial optimization problem, we 

transform this problem to be a local optimization 

problem by decomposing global QoS constraints into a 

set of local constraints and design a new global QoS 

constraints decomposition model that used to find the 

optimal local QoS constraints combination for each 

service. In this study proposes a new service discovery 

approach based on Web service QoS knowledge using 

java expert. 

 

SEMANTIC WEB SERVICE DISCOVERY  

USING JESS 
 

However, in this study we propose a novel method 
which utilizes the potentiality of forward inference of 
the JESS. The process of the proposed method is 
depicted in Fig. 1. In one of our previous works 
(Gnanasekar and Suresh, 2014), we have used a 
discovery algorithm, which is applied to the OWL-S 
service retrieval test collection, OWL-S TC (version 
4.0). For any particular query, this algorithm has 
returned more than one service with same functionality. 
For example, when the user wants to know the price of 
a book, the user had entered “Book” as input and 
“Price” as output. The algorithm has returned seven 
services with the same functionality which the user is 
desired. 

However, it is obvious that the user may not be 

interested in all the seven Web Services, instead may be 

interested in one service with good QoS. It would be 

better to incorporate, the discovery algorithm with a 

fine tuned search engine to extract the relevant service 

the user expects. Hence, a user profile is created with 

the user’s preferences. The user profile is converted 

into JESS facts, which are the rules for the JESS 

inference engine. 
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Fig. 1: Architecture of rule based service discovery based on user profile 

 

Rule based inference engine: This module first 

converts the preferences in the user profile into JESS 

rules (Liangzhao et al., 2004). A JESS rule is 

something like an if... then statement in a procedural 

language, but it is not used in a procedural way. In the 

simplest terms, this means that JESS purpose it to 

continuously apply a set of rules to a set of data. We 

can  define  the  rules  that  make  up  our  own  

particular rule-based system. Jess rules look something 

like this: 

 

(

" "

( { 31})

( int " , !" ))

defrule welcome toddlers

Give a special greeting to young children

person age

pr out t Hello little one crlf

−

<

=>

 

 

This rule has two parts, separated by the "=>" 

symbol. The first part consists of the LHS pattern 

(person {age<3}). The second part consists of the RHS 

action. Each Jess rule engine holds a collection of 

knowledge nuggets called facts. Every fact has a 

template. The template has a name and a set of slots and 

each fact gets these things from its template. 

Based on this hypothesis, the user profile 

preferences are converted into the JESS rules. The 

excerpts of one of such rules are shown in Fig. 2. For 

the fine tuned Web Service discovery, the JESS 

inference engine compare the user’s rules drawn from 

the user profile registry and selects only the appropriate 

service information.  

 
 

Fig. 2: Excerpts of rules of the preferences of the user profile 

 

IMPLEMENTATION AND  

EXPERIMENTAL RESULTS 

 

In this study, we use JESS 7.1 as the rules engine, 

because it can be integrated into Eclipse 3.5 as a plug-in 

with no extra development effort. We have used a 

computer with a 1.73 GHz Pentium Dual CPU and 1.50 

GB of RAM was running Windows 7 OS, Java SDK 

1.4.1 and JESS 7.1. For the implementation we have 

taken seven Web Services and eight QoS parameters 

such as Cost, Response, Security, Latency, Throughput, 

Process Time, Performance and Availability. The user 

profile is updated with these QoS preferences. This 

users profile with their preferences is first translated 

into JESS knowledge base. This knowledge base is then 

converted into JESS rules as shown in Fig. 3.  
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Fig. 3: Screen shot for the JESS which inferred probabilities of user given QoS options for book purchase example 

 
Table 1: JESS which inferred probabilities of different services for book purchase service here, H = high, L = low and M = medium 

Test case Cost Response Security Latency Throughput Process time Performance Availability 

1 L - H L - H H - 
2 L H H L H H H M 

3 M H M L H M H H 

4 L H - M - - - M 
5 - - - - H H H H 

6 - H H - - L H - 

7 L - - - - M M H 
8 L - - L H - H H 

9 - - H L - - H H 

10 M M - M H - M - 

Test case Book price 

Book_price_ 

service 

Book_cheapest 

price_service 

Book_reviewprice

_service 

Book_taxed 

price_service 

Book person_ 

price_service 

Book_recommended 

price_service 

1 6.23 21.5 18.20 16.4 7.32 9.23 13.3 

2 8.19 20.2 17.60 19.2 6.32 10.20 12.4 
3 5.78 21.1 16.60 17.9 4.55 11.40 18.6 

4 8.76 17.3 14.20 20.1 9.13 11.20 17.2 
5 8.82 19.4 17.40 16.3 5.24 12.60 18.2 

6 11.20 17.6 11.30 17.2 7.28 13.90 16.9 

7 12.20 16.4 17.20 14.6 8.33 15.30 13.2 
8 5.83 20.6 18.30 16.6 5.23 9.81 18.7 

9 7.10 18.8 16.80 17.3 7.73 10.40 17.2 

10 10.20 18.4 8.89 17.5 14.30 13.70 16.8 

 
Suppose a user wants to select a best service with 

high security, performance and processing time and low 
latency and cost. In this case, the probability of 
book_price_service is 21.5% followed by the 
probability achieved by book_cheapestprice_service 
with 18.2%. That is based on the probability 
distribution of various dependency convergences; the 
inference engine of JESS inferred that for the given 
preference book_price_service is a better choice than 
any other services. Here the user has ignored or is not 
interested in the remaining QoS such as response, 
availability and throughput. The use of the JESS has 

reduced processing time and facilitated the Web 
Service discovery based on the customer satisfaction. 
The powerful inference engine of JESS infers the facts 
based on the rules and produced the outputs as show in 
Table 1. 
 

Semantic web service discovery using belief 

network: 
Belief network: A belief network is also called 
Bayesian network, is a graphical representation of a 
probabilistic dependency model. It consists of a set of 
nodes, where each node represents stochastic variables
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Fig. 4: A compiled belief net shows the probabilities of user given QoS options for book purchase example 

 

and interconnecting arcs represent the causal influences 

between these variables. It is the use of Bayesian 

calculus to determine the state probabilities of each 

node from the predetermined conditional and prior 

probabilities that distinguishes Bayesian belief 

networks from other probabilistic dependency models. 

 

Implementation and experimental results: Each node 

in the belief net must have a relation stored at each 

node, which expresses the value of that node in terms of 

its parents (or as a constant if the node has no parents). 

The node may be deterministic or probabilistic. If the 

node is probabilistic, then the relation must provide a 

probability for each state of the child, for each possible 

configuration of parent values.  

In book purchase example, there are seven services 

from OWL-S TC, such as Book Price, 

book_price_service, book_cheapestprice_service, 

book_reviewprice_service, book_taxedprice_service, 

bookperson_price_service, book_recommendedprice_ 

service. Based on this hypothesis, a belief net for the 

QoS parameters such as availability, cost, response 

time, security, latency, throughput, process time and 

performance is constructed for the Book Purchase 

example. However, the user may be in trouble selecting 

the best service among these services. Suppose a user 

wants to select a best service with high security, 

performance and processing time and low latency and 

cost. The probabilities of the services are inferred by 

the Belief Net is as shown in Fig. 4. In this case, the 

probability of book_price_service is 23.5% followed by 

the probability achieved by book_reviewprice_service 

with 20.6%. That is based on the probability 

distribution of various dependency convergences; the 

belief net inferred that for the given preference 

book_price_service is a better choice than any other 

services. Here the user has ignored or is not interested 

in the remaining QoS such as response, availability and 

throughput. The various possible probabilities of the 

Book Purchase example are given in Table 2. 

 

DISCUSSION 

 

In Belief network is to be noticed that, for each 

different requirement, the probability of the services 

differ according to the probability distribution given to 

the QoS parameters. For the Book Purchase example 

book_price_service is having a highest probability than 

any other services except test case numbers 6, 7 and  

10. In the test cases 6 and 7, book_ 

recommendedprice_service is having the probability of 

18.9 and 20.5%, respectively, whereas in test case 

number 10, it is book_reviewprice_service which 

attained the probability of 21.5%. It is to be noticed that 

in JESS, book_price_service is having a highest 

probability than any other services except test case 

numbers 4 and 7. In the test cases 4 and 7, book_ 

reviewprice_service is having the probability of 20.1% 

and book_cheapestprice_service is having the 

probability of 17.2%. From the Table 1 and 2, it is 

found that book_price_service which would be better 

choice than any other service. Figure 5 shows the 

performance of Belief Network and JESS. From the 

experimental result, it is found that belief network to 

intelligently infer the best and most relevant service 

compare to the JESS.  

Services

BookPrice
book_price_service
book_Cheapestprice_servi...
book_reviewprice_service
book_taxedprice_service
bookperson_price_service
book_recommendedprice_...

5.69
23.5
18.8
20.6
8.66
8.68
14.1

Availability

High
Medium
Low

60.0
30.0
10.0

Cost

High
Medium
Low

   0
   0

 100

Performance

High
Medium
Low

 100
   0
   0

ProcessTime

High
Medium
Low

 100
   0
   0

Latency

High
Medium
Low

   0
   0

 100

Security

High
Medium
Low

 100
   0
   0

Response

High
Medium
Low

60.0
30.0
10.0

Throughput

High
Medium
Low

60.0
30.0
10.0



 

 

Res. J. Appl. Sci. Eng. Technol., 10(5): 562-569, 2015 

 

567 

Table 2: Probabilities of different services for book purchase service 

Test case Cost Response Security Latency Throughput Process time Performance Availability 

1 L - H L - H H - 
2 L H H L H H H M 
3 M H M L H M H H 
4 L H - M - - - M 
5 - - - - H H H H 

6 - H H - - L H - 

7 L - - - - M M H 
8 L - - L H - H H 

9 - - H L - - H H 

10 M M - M H - M - 

Test case Book price 

Book_price_ 

service 

Book_cheapest 

price_service 

Book_review 

price_service 

book_taxed 

price_ service 

Book person 

_price_ service 

Book_ recommended 

price_service 

1 5.69 23.5 18.80 20.6 8.66 8.68 14.1 

2 7.89 23.7 18.40 21.1 5.26 10.50 13.2 

3 5.41 24.3 18.90 16.2 2.70 10.80 21.6 

4 9.88 21.4 15.10 16.1 8.23 10.60 18.7 

5 7.80 22.9 17.50 16.7 3.64 11.60 19.9 

6 12.20 17.6 12.20 17.1 8.58 13.40 18.9 

7 14.00 16.3 10.90 15.7 8.30 14.20 20.5 

8 5.92 24.2 18.80 17.2 3.23 10.80 19.9 

9 7.13 22.8 17.40 17.8 6.93 10.00 17.9 

10 11.00 12.0 7.89 21.5 15.90 13.50  18.3 

 

 
 

                                                     (a)                                                                                                 (b) 
 

 
 

                                                    (c)                                                                                               (d) 
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                                                    (e)                                                                                                 (f) 

 

 
 

                                                (g)                                                                                            (h) 

 

 
 

(i)                                                                                                  (j) 

 

Fig. 5: The performance of belief network and JESS,  a graphical representation of experimental results of (a) case 1, (b) case 2, 

(c) case 3, (c) case 4, (e) case 5, (f) case 6, (g) case 7, (h) case 8, (i) case 9, (j) case 10 
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CONCLUSION 
 

In this study Web service discovery using JESS 
inference engine has been proposed. The experimental 
result shows that the JESS inference engine infers the 
potential web service which the service requestor 
wanted to use. The profile of the user is updated once 
with the user’s preferences and can be used to make a 
fine tune search on the services of similar functionality. 
The profile is to be updated whenever the user wants to 
change the preference list; otherwise the same profile is 
used for several times and avoids each time entry into 
the system. The experimental results demonstrate the 
feasibility of our approach. 
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