
Research Journal of Applied Sciences, Engineering and Technology 10(7): 824-830, 2015
DOI:10.19026/rjaset.10.2436
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2015 Maxwell Scientific Publication Corp.

Submitted: February 24, 2015 Accepted: April 2, 2015 Published: July 10, 2015

Corresponding Author: V. Devendiran, Faculty of Information and Communication Engineering, Anna University, Chennai,
India

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

824

Research Article

Design and Implementation of Low Power AES SBOX with Error Detection Circuit

1
V. Devendiran and

2
S. Letitia

1
Faculty of Information and Communication Engineering, Anna University, Chennai, India

2
Department of ECE, Thanthai Periyar Government Institute of Technology, Vellore, India

Abstract: Soft error is nowadays a serious problem when implementing AES SBOX algorithms in hardware. The
objective of the study is to detect the error using parity bit for the AES SBOX and implementation in hardware with
low area and power. This circuit can products the AES Encryption/Decryption process and systems against fault
based attacks. It can also apply to any digital communication systems and security related applications.

Keywords: AES SBOX, error detection, low area

INTRODUCTION

Cryptographic algorithms play a crucial role in the

information society. When we use teller machines,
home banking services or credit cards, call someone on
a mobile phone, get access to health care services, or
buy something on the web, cryptographic algorithms
are used to offer protection. These algorithms guarantee
that nobody can steal our money, place a call at our
expense, eavesdrop on our phone calls, or get
unauthorized access to sensitive health data.
Information technology keeps changing and will
become increasingly pervasive, while disappearing
from the eye of the user. However, this evolution keeps
presenting new security challenges and there is no
doubt that cryptographic algorithms and protocols will
form an important part of the solution (Bertoni et al.,
2003).

Fault detection: Fault detection and tolerance schemes
for various implementations of cryptographic algorithm
have recently been considered. Several motivations led
to increase the reliability of these circuits. From one
side the circuit implementation of cryptographic
algorithms can be quite complex, increasing the
probability of device failures. Fault detection is
therefore helpful in finding faults during the production
tests. In addition, fault tolerance schemes are very
useful to on-line tolerate faults during mission time.
From the other side, intentional intrusions and attacks
based on the malicious injection of transient faults into
the device are very efficient in order to extract the
secret key (Boneh et al., 2001; Bertoni et al., 2003).

Fault based attacks:
Side channel attacks-power analysis attacks: Attacks
based on fault injection are not the only way to gain

access to sensitive information. In the last few years,
new techniques for attacking implementations of
cryptographic algorithms have been studied and
developed. Unlike direct attacks on the algorithm, these
techniques, called Side Channel Attacks, attempt to
gather knowledge of sensitive data that may leak from a
particular implementation of the cryptographic
algorithm. One of the most successful side-channel
attack exploits (Regazzoni et al., 2007; Brier et al.,
2004) the correlation between the power consumption
of a given device and the data being processed. These
Power Analysis Attacks have particular relevance since
for some of them; no knowledge regarding the
implementation of the target device is needed in order
to be effective. Several solutions have already been
proposed and implemented, at different levels, to
counteract these unconventional forms of attacks.
However, almost all the proposed countermeasures so
far have targeted a single type of side-channel attack
and only very few studies have addressed the effects
that one specific countermeasure can have on the
resistance to a different type of attack (Kocher et al.,
1999).

The Advanced Encryption Standard (AES) (2001)

is a block cipher adopted as an encryption standard by

the U.S. government. AES began immediately to

replace the Data Encryption Standard (DES), which had

been in use since 1976. AES outperforms DES in

improved long-term security because of larger key sizes

(128, 192 and 256 bits, respectively). Another major

advantage of AES is the possibility of efficient

implementation on various platforms. AES is suitable

for small 8-bit microprocessor platforms and common

32-bit processors and it is appropriate for dedicated

hardware implementations. Hardware implementations

can reach throughput rates in the gigabit range.

Res. J. App. Sci. Eng. Technol., 10(7): 824-830, 2015

825

A number of hardware implementations for the

AES SBox circuit have been proposed (Zhang and

Parhi, 2002) because AES Sbox was most expensive

part of the circuit in terms of area. Next Section will

describe in detail the algorithm of the AES and in

particular the definition and the characteristics of the

SBox. In this study, we focus on to detect the error

using parity bit for the AES SBox.

The AES SBox performs nonlinear operation and

variant with parity. The parity bit is not well-

maintained after the transformation. This is the reason

for developed to predict the value of the output parity

bit starting from the input bit.

In this study, we focus on the design and

implementation of low power AES SBox with error

detection circuit Compared to previous works, our

solution has produced low area and power.

MATERIALS AND METHODS

Advanced encryption standard: The Rijindael

algorithm (Daemen and Rijmen, 1999) used for the

AES standard implements a symmetric-key

cryptographic function in which both the sender and

receiver use a single key to encrypt and decrypt the

information.

 Although in the block length of Rijndael can be

128,192, or 256 bits, respectively the AES algorithm

only adopted the block length of 128 bits. Meanwhile,

the key length can be 128, 192, or 256 bits,

respectively. The AES algorithm’s internal operations

are performed on a two dimensional array of bytes

called State. The State consists of 4 rows of bytes and

each row has Nb bytes. Each byte is denoted by Si, j

(0≤i<4, 0≤j<Nb). Since the block length is 128 bits,

Fig. 1: Mapping of input bytes, state array and output bytes

Fig. 2: AES algorithm (encryption and decryption)

Res. J. App. Sci. Eng. Technol., 10(7): 824-830, 2015

826

each row of the State contains Nb = 4 bytes. For the
sake of simplicity, we focus on key length equal to 128
bits. The four bytes in each column of the State array
form a 32-bit word, with the row number as the index
for the four bytes in each word. At the beginning of
encryption or decryption, the array of input bytes is
mapped to the State array as illustrated in Fig. 1. The
128-bit block can be expressed as 16 bytes: in0, in1, in
2, … in 15. Encryption and decryption processes are
performed on the State, at the end of which the final
value is mapped to the output bytes array out0, out1,
out 2, … out15.

The AES algorithm is an iterative algorithm. Each
iteration is called a round. The total number of rounds
is 10. At the start of encryption, input is copied to the
State array. After the initial round key addition, 10
rounds of encryption are performed. The first 9 rounds
are the same, with small differences in the final round.
As illustrated in Fig. 2, each of the first 9 rounds
consists of 4 transformations: Sub Bytes, Shift Rows,
Mix Columns and Add Round Key. The final round
excludes the Mix Columns transformation. The
encryption structure in Fig. 2 can be inverted to get a
straightforward structure for decryption.

Sub bytes transformation: The Substitution-Box (S-

box) is a basic component of symmetric key algorithms

and should always be carefully chosen to create strong

confusion and to resist certain kinds of cryptanalysis.

The multiplicative inversion maps over Galois Field are

frequently employed due to their ideal cryptographic

characteristic.
This SBox is constructed by composing two

transformations:

• Take the multiplicative inverse in the finite field
GF (2

8
)

The element (00000000)2 is mapped to itself

• Apply the following affine transformation (over
GF (2)):

iii

iiii

cbb

bbbb

⊕⊕

⊕⊕⊕=′

++

++

8mod)7(8mod)6(

8mod)5(8mod)4(

For 0≤i<8, where bi is the i
th

 bit of the byte and Ci

is the i
th

 bit of a byte c whose value is fixed and is equal

to {01100011}.

This transformation can be pre-calculated for each

possible input value since it works on a single byte,

therefore there are only 256 values.

Shift rows transformation: In this transformation, the

bytes in the first row of the State do not change. The

second, third and fourth rows shift cyclically to the left

1, 2 and 3 bytes, respectively.

Mix columns transformation: The Mix Columns
transformation is performed on the State array column-

by-column. Each column is considered as a four-term
polynomial over GF (2

8
) and multiplied by a (x)

modulo x
4+1

,

where,

A (x) = (00000011)

2
 x

3
+ (00000001)

2
 x

2
+

(00000001)
2
 x + (00000010)

2

Add round key transformation: In Add Round Key
transformation, a round key is added to the State array
by bitwise XOR operation. Each round key consists of
16 words generated from Key Expansion described
below.

Key expansion: The key expansion routine, as part of
the overall AES algorithm, takes the input key of 128
bits. The output is an expanded key of 11*128 bits, i.e.,
the expanded key is composed of the secret key and 10
round keys, one for each round.

Error detection circuit’s overview: The AES
(Rijndael) algorithm (Daemen and Rijmen, 1999)
implements a block cipher for symmetric key
cryptography. The block size is 128 bits, while the key
size is 128, 192 or 256 bits, respectively. During the
encryption process, four different transformations are
iterated a number of times depending on the key size.
The four basic transformations are: Shift Rows, Sub
Bytes (using SBoxes), Mix Columns and finally Add
Round Key. The added key is different in each round
and these round keys are generated by a key schedule
routine that takes the secret key and executes an
expansion as specified in the standard. The same basic
transformations are used during decryption, but they are
applied in reverse order. For the AES S-box, we
implemented four versions of the nonlinear function.
The first circuit implements the nonlinear
transformation as described in the standard, while in all
the other three we added logic to provide error
detection. In this section we summarize the solutions
based on the parity bit for the SBox.

The parity check we used is the one proposed in a
single odd parity bit is added to every byte. An AES S-
box with an added error detection circuit (Bertoni et al.,
2003).

The error detection circuit checks the correctness
of the input and the output of the S-box. When new data
enters the S-box, the check bits are separated from the
data bits and error detection is performed. If no error is
detected, the 8 data bits enter the S-box circuit. The S-
box produces then the result of the non-linear
transformation plus the corresponding check bits. At
this point the second check is performed, again as
described before. If no error is detected in both checks,
the output of the S-box can be forwarded to the next
round transformation, otherwise, a faulty output
composed of all zeros except the rightmost bit is
generated to signal the error.

Implementation of AES s-box error detection
circuit: The SBox was implemented using 256*8 bit

Res. J. App. Sci. Eng. Technol., 10(7): 824-830, 2015

827

(a)

(b)

Fig. 3: (a) AES S-box (b) error detection of AES S-box

memory. The Memory circuit consisting of a
combination of data storage section and address
decoding circuit. The input data bytes will have 8 bit
data with even parity bits.

 A solution to generate the outgoing parity bits is
proposed in and sketched in Fig. 3a: an odd parity bit is
either stored with each data byte in the SBox (memory
implementation), or on-line generated by an ad-hoc
combinational circuit (in the case of combinational
logic implementation for the SBox). This solution is not
very expensive and it guarantees acceptable fault
coverage.

To increase the dependability and to detect
additional input parity errors and some internal memory
errors (data or decode), proposes replacing the original

8-bit decoder with a 9-bit one, yielding a 256×9 bit
memory (Fig. 3b). If a 9-bit address with an even parity
is decoded, the corresponding output byte with its
associated even parity bit is produced. Otherwise, a
constant word of 9 bits with a deliberately odd parity is
output, e.g., “000000001”. Thus, half of the entries in
the SBox memory will be deliberately wrong (in the
figure, all the rows marked with a ‘*’). In case of a
single error in the input value, a wrong cell will be
addressed. That cell will contain an erroneous parity bit
that will be detected during the parity bit check. This
solution guarantees higher fault coverage, but it’s very
expensive in terms of used area.

Proposed solution implementation of AES s-box
error detection circuit: In this study, we focus on the

use of the parity code for a single SBox. We propose a
solution that is suitable for all the schemes where there
is a parity check for each byte element of the matrix S.
The main problem in implementing the parity bit for the
SBox is related to the fact that the SBox transformation
is not invariant with respect to the parity bit. Hence, it
is necessary to implement a method to predict the
output parity, given the input value.

In order to meet higher fault detection capability a
code based fault detection approach has been adopted,
consisting of information redundancy applied to both
data and address of the memory storing the SBox
values. With this solution we are able to target Address
Faults as well. An Address Faults typically cause that
during a read operation an unexpected cell is accessed
by a given address. The use of detection codes based on
both the address and the data allows the detection of
Address Faults. One characteristic of the SBox is that it
implements an invertible function. This feature allows
calculating the input value starting from the output
response. Therefore, it is possible to predict the parity
bit of the input word starting from the output response
of the SBox (without implementing the inverse
function, see below for details). The main idea is that
we do not add any parity bit in the memory that stores
the SBox values (or into the combinational logic that
implements it). On the contrary, we calculate the parity
of the input value and we compare it with the parity bit
predicted starting from the output value of the SBox. In
addition, we calculate the parity bit of the output of the
SBox and we compare it with the prediction of this bit

Res. J. App. Sci. Eng. Technol., 10(7): 824-830, 2015

828

Fig. 4: Proposed architecture of AES SBOX

starting from the input value. All works presented in the

past were based on the predictor of the output parity

(Fig. 4).
We calculated the Output Parity Checker and the

Input Parity Checker using the truth tables of the SBox
and of the parity bits, calculated for both the input value
and the output value. Table 1 shows the first elements
of the truth tables. This scheme allows double
protection of the SBox circuit and it should allow
covering more faults than the architectures proposed in
the literature.

This result is important when considering

protecting circuits from side channel attacks the parity

bit must be secured as well as the other bits.

RESULTS AND DISCUSSION

Experimental results: In this section we provide some

result related to the area of the proposed approach

(Karri et al., 2003). Analytical comparisons of the

selected previous works are as summarized in Table 2.

The Proposed AES SBOX circuits have been

developed in VHDL Language. It was simulated and

synthesized on the Xilinx FPGA device VERTEX 2

XC2V80 as depicted in Fig. 4.

Table 1: Parity checker truth tables

Input Parity Output Parity

00000100 1 11110010 1

00010011 1 01111101 0

00010001 0 10000010 0

00010101 1 01011001 0

Output parity checker Input parity checker

00000100 1 11110010 1

00010011 0 01111101 1

00010001 0 10000010 0

00010101 0 01011001 1

Table 2: Analytical comparisons of the selected previous works

 Used Available Utilization (%)

Existing work: normal SBOX

No of slice 163 768 21

No of 4 i/p LUT 296 1536 19

No of bonded IOB 18 124 14

Proposed work: concurrent error detection SBOX

No of slice 144 6144 2

No of 4 i/p LUT 265 12288 2

No of bonded IOB 17 320 5

Proposed work: non concurrent error detection SBOX

No of slice 192 6144 3

No of 4 i/p LUT 297 12288 2

No of bonded IOB 18 320 2

At the different proposed AES SBOX results as

listed below:

• Table 3 shows a Synthesis report of Normal AES

SBOX.

• Table 4 shows a synthesis report of concurrent

error detection AES SBOX.

• Table 5 shows a synthesis report of non-concurrent

error detection AES SBOX.

The final simulation result was taken after

replacement of Proposed AES SBOX using AES

Algorithm. It was verified using MODELSIM XE

III6.1E as depicted in Fig. 5.

The above said both proposed architectures have

been performed in a minimized area and power.

Synthesis report of normal AES SBOX using

XILINXISE 9.2I is shown in Table 3.

Synthesis report of concurrent error detection

AES SBOX using XILINXISE 9.2I is shown in

Table 4.

Table 3: AES normal SBOX

Device utilization summary

Logic utilization Used Available Utilization (%) Note (s)

Number of 4 input LUTs 264 12,288 2

Logic distribution

Number of occupied slices 167 6,144 2

Number of slices containing only related logic 167 167 100

Number of slices containing unrelated logic 0 167 0

Totel number of 4 input LUTs 264 12,288 2

Number of bonded IOBs 17 240 7

Totel equivalent gate count for design 1,743

Additional JTAG gate count for IOBs 816

Res. J. App. Sci. Eng. Technol., 10(7): 824-830, 2015

829

Table 4: AES concurrent error detection AES SBOX

CED partition summary
No partition information was found
Device utilization summary

Logic utilization Used Available Utilization (%) Note (s)

Number of 4 input LUTs 264 12,288 2
Logic distribution
Number of occupied slices 167 6,144 2
Number of slices containing only related logic 167 167 100
Number of slices containing unrelated logic 0 167 0
Totel number of 4 input LUTs 264 12,288 2
Number of bonded IOBs 17 320 5
Total equivalent gate count for design 1,743
Additional JTAG gate count for IOBs 816

Table 5: AES non concurrent error detection AES SBOX

NONCED partition summary
No partition information was found
Device utilization summary

Logic utilization Used Available Utilization (%) Note (s)

Number of 4 input LUTs 297 12,288 2
Logic distribution
Number of occupied slices 192 6,144 3
Number of slices containing only related logic 192 192 100
Number of slices containing unrelated logic 0 192 0
Totel number of 4 input LUTs 297 12,288 2
Number of bonded IOBs 18 320 5
Totel equivalent gate count for design 1,911
Addition JTAG gate count for IOBs 864

Fig. 5: AES encryption result

Synthesis report of non concurrent error detection

AES SBOX using XILINXISE 9.2I is shown in
Table 5.

Advanced encryption standard result using
modelsim XE III6.1E is shown in Fig. 5.

CONCLUSION

In this study, the processor is designed using
VHDL description language, the simulation is done
using Modelsim XE III 6.1e and the design was
synthesized on the Xilinx FPGA device VERTEX 2
XC2V80. The simulation results show that the

processor provides a very good performance. Its Utilize
a maximum 5% of area compare to the Normal AES
SBOX area to a maximum of 21%.

The proposed future works to develop the
circuit for error detection using sub pipeline
architecture.

REFERENCES

Advanced Encryption Standard (AES), 2001. Federal

Information Processing Standards Publication 197.
Retrieved from: http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf.

Res. J. App. Sci. Eng. Technol., 10(7): 824-830, 2015

830

Bertoni, G., L. Breveglieri, I. Koren, P. Maistri and
V. Piuri, 2003. Error analysis and detection
procedures for a hardware implementation of the
advanced encryption standard. IEEE T. Comput.,
52: 492-505.

Boneh, D., R. DeMillo and R. Lipton, 2001. On the
importance of eliminating errors in cryptographic
computations. J. Cryptol., 14: 101-119.

Brier, E., C. Clavier and F. Olivier, 2004. Correlation
power analysis with a leakage model. In: Joye,
M. and J.J. Quisquater (Eds.), CHES, 2004, LNCS
3156, Springer-Verlag, Berlin, Heidelberg, pp:
16-29.

Daemen, J. and V. Rijmen, 1999. AES Proposal:
Rijndael. Retrieved fron: http://csrc.nist.gov/
CryptoToolkit/aes/rijndael/Rijndael.pdf.

Karri, R., G. Kuznetsov and M. Goessel, 2003. Parity-
based concurrent error detection of substitution-
permutation network block ciphers. In: Walter,
C.D. et al. (Eds.), CHES, 2003. LNCS 2779,
Springer-Verlag, Berlin, Heidelberg, pp: 113-124.

Kocher, P.C., J. Jaffe and B. Jun, 1999. Differential

power analysis: Leaking secrets. Proceeding of

Crypto ’99. LNCS 1666, Springer-Verlag, pp:

388-397.

Regazzoni, F., T. Eisenbarth, J. Großsch¨adl,

L. Breveglieri, P. Ienne, I. Koren and C. Paar,

2007. Power attacks resistance of cryptographic S-

boxes with added error detection circuits.

Proceedings of the 21st IEEE International

Symposium on Defect and Fault-Tolerance in

VLSI Systems.

Zhang, X. and K.K. Parhi, 2002. Implementation

approaches for the advanced encryption standard

algorithm. IEEE Circ. Syst. Mag., 2(4): 24-46.

