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Abstract: Soft error is nowadays a serious problem when implementing AES SBOX algorithms in hardware. The 
objective of the study is to detect the error using parity bit for the AES SBOX and implementation in hardware with 
low area and power. This circuit can products the AES Encryption/Decryption process and systems against fault 
based attacks. It can also apply to any digital communication systems and security related applications. 
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INTRODUCTION 

 
Cryptographic algorithms play a crucial role in the 

information society. When we use teller machines, 
home banking services or credit cards, call someone on 
a mobile phone, get access to health care services, or 
buy something on the web, cryptographic algorithms 
are used to offer protection. These algorithms guarantee 
that nobody can steal our money, place a call at our 
expense, eavesdrop on our phone calls, or get 
unauthorized access to sensitive health data. 
Information technology keeps changing and will 
become increasingly pervasive, while disappearing 
from the eye of the user. However, this evolution keeps 
presenting new security challenges and there is no 
doubt that cryptographic algorithms and protocols will 
form an important part of the solution (Bertoni et al., 
2003). 
 
Fault detection: Fault detection and tolerance schemes 
for various implementations of cryptographic algorithm 
have recently been considered. Several motivations led 
to increase the reliability of these circuits. From one 
side the circuit implementation of cryptographic 
algorithms can be quite complex, increasing the 
probability of device failures. Fault detection is 
therefore helpful in finding faults during the production 
tests. In addition, fault tolerance schemes are very 
useful to on-line tolerate faults during mission time. 
From the other side, intentional intrusions and attacks 
based on the malicious injection of transient faults into 
the device are very efficient in order to extract the 
secret key (Boneh et al., 2001; Bertoni et al., 2003). 
 
Fault based attacks:  
Side channel attacks-power analysis attacks: Attacks 
based on fault injection are not the only way to gain 

access to sensitive information. In the last few years, 
new techniques for attacking implementations of 
cryptographic algorithms have been studied and 
developed. Unlike direct attacks on the algorithm, these 
techniques, called Side Channel Attacks, attempt to 
gather knowledge of sensitive data that may leak from a 
particular implementation of the cryptographic 
algorithm. One of the most successful side-channel 
attack exploits (Regazzoni et al., 2007; Brier et al., 
2004) the correlation between the power consumption 
of a given device and the data being processed. These 
Power Analysis Attacks have particular relevance since 
for some of them; no knowledge regarding the 
implementation of the target device is needed in order 
to be effective. Several solutions have already been 
proposed and implemented, at different levels, to 
counteract these unconventional forms of attacks. 
However, almost all the proposed countermeasures so 
far have targeted a single type of side-channel attack 
and only very few studies have addressed the effects 
that one specific countermeasure can have on the 
resistance to a different type of attack (Kocher et al., 
1999). 

The Advanced Encryption Standard (AES) (2001) 

is a block cipher adopted as an encryption standard by 

the U.S. government. AES began immediately to 

replace the Data Encryption Standard (DES), which had 

been in use since 1976. AES outperforms DES in 

improved long-term security because of larger key sizes 

(128, 192 and 256 bits, respectively). Another major 

advantage of AES is the possibility of efficient 

implementation on various platforms. AES is suitable 

for small 8-bit microprocessor platforms and common 

32-bit processors and it is appropriate for dedicated 

hardware implementations. Hardware implementations 

can reach throughput rates in the gigabit range. 
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A number of hardware implementations for the 

AES SBox circuit have been proposed (Zhang and 

Parhi, 2002) because AES Sbox was most expensive 

part of the circuit in terms of area. Next Section will 

describe in detail the algorithm of the AES and in 

particular the definition and the characteristics of the 

SBox. In this study, we focus on to detect the error 

using parity bit for the AES SBox. 

The AES SBox performs nonlinear operation and 

variant with parity. The parity bit is not well-

maintained after the transformation. This is the reason 

for developed to predict the value of the output parity 

bit starting from the input bit. 

In this study, we focus on the design and 

implementation of low power AES SBox with error 

detection circuit Compared to previous works, our 

solution has produced low area and power.  

MATERIALS AND METHODS 

 

Advanced encryption standard: The Rijindael 

algorithm (Daemen and Rijmen, 1999) used for the 

AES standard implements a symmetric-key 

cryptographic function in which both the sender and 

receiver use a single key to encrypt and decrypt the 

information. 

 Although in the block length of Rijndael can be 

128,192, or 256 bits, respectively the AES algorithm 

only adopted the block length of 128 bits. Meanwhile, 

the key length can be 128, 192, or 256 bits, 

respectively. The AES algorithm’s internal operations 

are performed on a two dimensional array of bytes 

called State. The State consists of 4 rows of bytes and 

each row has Nb bytes. Each byte is denoted by Si, j 

(0≤i<4, 0≤j<Nb). Since the block length is 128 bits, 

 

 
 

Fig. 1: Mapping of input bytes, state array and output bytes 

 

 
 

Fig. 2: AES algorithm (encryption and decryption) 
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each row of the State contains Nb = 4  bytes. For the 
sake of simplicity, we focus on key length equal to 128 
bits. The four bytes in each column of the State array 
form a 32-bit word, with the row number as the index 
for the four bytes in each word. At the beginning of 
encryption or decryption, the array of input bytes is 
mapped to the State array as illustrated in Fig. 1. The 
128-bit block can be expressed as 16 bytes: in0, in1, in 
2, … in 15. Encryption and decryption processes are 
performed on the State, at the end of which the final 
value is mapped to the output bytes array out0, out1, 
out 2, … out15. 

The AES algorithm is an iterative algorithm. Each 
iteration is called a round. The total number of rounds 
is 10. At the start of encryption, input is copied to the 
State array. After the initial round key addition, 10 
rounds of encryption are performed. The first 9 rounds 
are the same, with small differences in the final round. 
As illustrated in Fig. 2, each of the first 9 rounds 
consists of 4 transformations: Sub Bytes, Shift Rows, 
Mix Columns and Add Round Key. The final round 
excludes the Mix Columns transformation. The 
encryption structure in Fig. 2 can be inverted to get a 
straightforward structure for decryption. 
 
Sub bytes transformation: The Substitution-Box (S-

box) is a basic component of symmetric key algorithms 

and should always be carefully chosen to create strong 

confusion and to resist certain kinds of cryptanalysis. 

The multiplicative inversion maps over Galois Field are 

frequently employed due to their ideal cryptographic 

characteristic.  
This SBox is constructed by composing two 

transformations: 
 

• Take the multiplicative inverse in the finite field 
GF (2

8
) 

The element (00000000)2 is mapped to itself 

• Apply the following affine transformation (over 
GF (2)): 
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For 0≤i<8, where bi is the i
th

 bit of the byte and Ci 

is the i
th

 bit of a byte c whose value is fixed and is equal 

to {01100011}. 

This transformation can be pre-calculated for each 

possible input value since it works on a single byte, 

therefore there are only 256 values.  

 

Shift rows transformation: In this transformation, the 

bytes in the first row of the State do not change. The 

second, third and fourth rows shift cyclically to the left 

1, 2 and 3 bytes, respectively. 

 
Mix columns transformation: The Mix Columns 
transformation is performed on the State array column-

by-column. Each column is considered as a four-term 
polynomial over GF (2

8
) and multiplied by a (x) 

modulo x
4+1

,
 
where, 

 
A (x) = (00000011)

2
 x

3 
+ (00000001)

2
 x

2 
+ 

(00000001)
2
 x + (00000010)

2
 

 
Add round key transformation: In Add Round Key 
transformation, a round key is added to the State array 
by bitwise XOR operation. Each round key consists of 
16 words generated from Key Expansion described 
below. 
 
Key expansion: The key expansion routine, as part of 
the overall AES algorithm, takes the input key of 128 
bits. The output is an expanded key of 11*128 bits, i.e., 
the expanded key is composed of the secret key and 10 
round keys, one for each round. 
 
Error detection circuit’s overview: The AES 
(Rijndael) algorithm (Daemen and Rijmen, 1999) 
implements a block cipher for symmetric key 
cryptography. The block size is 128 bits, while the key 
size is 128, 192 or 256 bits, respectively. During the 
encryption process, four different transformations are 
iterated a number of times depending on the key size. 
The four basic transformations are: Shift Rows, Sub 
Bytes (using SBoxes), Mix Columns and finally Add 
Round Key. The added key is different in each round 
and these round keys are generated by a key schedule 
routine that takes the secret key and executes an 
expansion as specified in the standard. The same basic 
transformations are used during decryption, but they are 
applied in reverse order. For the AES S-box, we 
implemented four versions of the nonlinear function. 
The first circuit implements the nonlinear 
transformation as described in the standard, while in all 
the other three we added logic to provide error 
detection. In this section we summarize the solutions 
based on the parity bit for the SBox. 

The parity check we used is the one proposed in a 
single odd parity bit is added to every byte. An AES S-
box with an added error detection circuit (Bertoni et al., 
2003). 

The error detection circuit checks the correctness 
of the input and the output of the S-box. When new data 
enters the S-box, the check bits are separated from the 
data bits and error detection is performed. If no error is 
detected, the 8 data bits enter the S-box circuit. The S-
box produces then the result of the non-linear 
transformation plus the corresponding check bits. At 
this point the second check is performed, again as 
described before. If no error is detected in both checks, 
the output of the S-box can be forwarded to the next 
round transformation, otherwise, a faulty output 
composed of all zeros except the rightmost bit is 
generated to signal the error. 
 
Implementation of AES s-box error detection 
circuit: The SBox was implemented using 256*8 bit 
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(a) 
 

 
 

(b) 
 
Fig. 3: (a) AES S-box (b) error detection of AES S-box 

 
memory. The Memory circuit consisting of a 
combination of data storage section and address 
decoding circuit. The input data bytes will have 8 bit 
data with even parity bits. 

 A solution to generate the outgoing parity bits is 
proposed in and sketched in Fig. 3a: an odd parity bit is 
either stored with each data byte in the SBox (memory 
implementation), or on-line generated by an ad-hoc 
combinational circuit (in the case of combinational 
logic implementation for the SBox). This solution is not 
very expensive and it guarantees acceptable fault 
coverage. 

To increase the dependability and to detect 
additional input parity errors and some internal memory 
errors (data or decode), proposes replacing the original 

8-bit decoder with a 9-bit one, yielding a 256×9 bit 
memory (Fig. 3b). If a 9-bit address with an even parity 
is decoded, the corresponding output byte with its 
associated even parity bit is produced. Otherwise, a 
constant word of 9 bits with a deliberately odd parity is 
output, e.g., “000000001”. Thus, half of the entries in 
the SBox memory will be deliberately wrong (in the 
figure, all the rows marked with a ‘*’). In case of a 
single error in the input value, a wrong cell will be 
addressed. That cell will contain an erroneous parity bit 
that will be detected during the parity bit check. This 
solution guarantees higher fault coverage, but it’s very 
expensive in terms of used area.  
 
Proposed solution implementation of AES s-box 
error detection circuit: In this study, we focus on the 

use of the parity code for a single SBox. We propose a 
solution that is suitable for all the schemes where there 
is a parity check for each byte element of the matrix S. 
The main problem in implementing the parity bit for the 
SBox is related to the fact that the SBox transformation 
is not invariant with respect to the parity bit. Hence, it 
is necessary to implement a method to predict the 
output parity, given the input value. 

In order to meet higher fault detection capability a 
code based fault detection approach has been adopted, 
consisting of information redundancy applied to both 
data and address of the memory storing the SBox 
values. With this solution we are able to target Address 
Faults as well. An Address Faults typically cause that 
during a read operation an unexpected cell is accessed 
by a given address. The use of detection codes based on 
both the address and the data allows the detection of 
Address Faults. One characteristic of the SBox is that it 
implements an invertible function. This feature allows 
calculating the input value starting from the output 
response. Therefore, it is possible to predict the parity 
bit of the input word starting from the output response 
of the SBox (without implementing the inverse 
function, see below for details). The main idea is that 
we do not add any parity bit in the memory that stores 
the SBox values (or into the combinational logic that 
implements it). On the contrary, we calculate the parity 
of the input value and we compare it with the parity bit 
predicted starting from the output value of the SBox. In 
addition, we calculate the parity bit of the output of the 
SBox and we compare it with the prediction  of  this  bit 
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Fig. 4: Proposed architecture of AES SBOX 

 

starting from the input value. All works presented in the 

past were based on the predictor of the output parity 

(Fig. 4).  
We calculated the Output Parity Checker and the 

Input Parity Checker using the truth tables of the SBox 
and of the parity bits, calculated for both the input value 
and the output value. Table 1 shows the first elements 
of the truth tables. This scheme allows double 
protection of the SBox circuit and it should allow 
covering more faults than the architectures proposed in 
the literature.  

This result is important when considering 

protecting circuits from side channel attacks the parity 

bit must be secured as well as the other bits.  

 

RESULTS AND DISCUSSION 

 

Experimental results: In this section we provide some 

result related to the area of the proposed approach 

(Karri et al., 2003). Analytical comparisons of the 

selected previous works are as summarized in Table 2. 

The Proposed AES SBOX circuits have been 

developed in VHDL Language. It was simulated and 

synthesized on the Xilinx FPGA device VERTEX 2 

XC2V80 as depicted in Fig. 4.  

Table 1: Parity checker truth tables 

Input   Parity  Output  Parity 

00000100  1 11110010 1 

00010011  1 01111101 0 

00010001  0 10000010 0 

00010101  1 01011001 0 

Output parity checker  Input parity checker 

00000100  1 11110010 1 

00010011  0 01111101 1 

00010001  0 10000010 0 

00010101  0 01011001 1 

 

Table 2: Analytical comparisons of the selected previous works 

 Used Available Utilization (%) 

Existing work: normal SBOX 

No of slice 163 768 21 

No of 4 i/p LUT 296 1536 19 

No of bonded IOB 18 124 14 

Proposed work: concurrent error detection SBOX 

No of slice 144 6144 2 

No of 4 i/p LUT 265 12288 2 

No of bonded IOB 17 320 5 

Proposed work: non concurrent error detection SBOX 

No of slice 192 6144 3 

No of 4 i/p LUT 297 12288 2 

No of bonded IOB 18 320 2 

 

At the different proposed AES SBOX results as 

listed below: 

 

• Table 3 shows a Synthesis report of Normal AES 

SBOX. 

• Table 4 shows a synthesis report of concurrent 

error detection AES SBOX. 

• Table 5 shows a synthesis report of non-concurrent 

error detection AES SBOX.  

 

The final simulation result was taken after 

replacement of Proposed AES SBOX using AES 

Algorithm. It was verified using MODELSIM XE 

III6.1E as depicted in Fig. 5. 

The above said both proposed architectures have 

been performed in a minimized area and power. 

Synthesis report of normal AES SBOX using 

XILINXISE 9.2I is shown in Table 3. 

Synthesis  report  of  concurrent  error  detection  

AES  SBOX  using  XILINXISE  9.2I  is  shown  in  

Table 4. 

 
Table 3: AES normal SBOX 

Device utilization summary 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Logic utilization  Used   Available   Utilization (%) Note (s) 

Number of 4 input LUTs  264  12,288  2  

Logic distribution        

Number of occupied slices  167  6,144  2  

Number of slices containing only related logic  167  167  100  

Number of slices containing unrelated logic  0  167  0  

Totel  number of 4 input LUTs  264  12,288  2  

Number of bonded IOBs  17  240  7  

Totel equivalent gate count for design  1,743    

Additional JTAG gate count for IOBs  816    
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Table 4: AES concurrent error detection AES SBOX 

CED partition summary 
No partition information was found 
Device utilization summary 

Logic utilization  Used  Available   Utilization (%)  Note (s) 

Number of 4 input LUTs  264 12,288  2  
Logic distribution       
Number of occupied slices   167 6,144  2  
Number of slices containing only related logic  167 167  100  
Number of slices containing unrelated logic  0 167  0  
Totel  number of 4 input LUTs  264 12,288  2  
Number of bonded IOBs  17 320  5  
Total equivalent gate count for design  1,743    
Additional JTAG gate count for IOBs  816    

 
Table 5: AES non concurrent error detection AES SBOX 

NONCED partition summary 
No partition information was found 
Device utilization summary     

Logic utilization  Used  Available   Utilization (%) Note (s) 

Number of 4 input LUTs  297 12,288  2  
Logic distribution      
Number of occupied slices   192 6,144  3  
Number of slices containing only related logic  192 192  100  
Number of slices containing unrelated logic  0 192  0  
Totel number of 4 input LUTs  297 12,288  2  
Number of bonded IOBs  18 320  5  
Totel equivalent gate count for design  1,911    
Addition JTAG gate count for IOBs  864    

 

 
 

Fig. 5: AES encryption result 

 
Synthesis report of non concurrent error detection 

AES SBOX using XILINXISE 9.2I  is  shown  in  
Table 5. 

Advanced encryption standard result using 
modelsim XE III6.1E is shown in Fig. 5. 

 

CONCLUSION 
 

In this study, the processor is designed using 
VHDL description language, the simulation is done 
using Modelsim XE III 6.1e and the design was 
synthesized on the Xilinx FPGA device VERTEX 2 
XC2V80. The simulation results show that the 

processor provides a very good performance. Its Utilize 
a maximum 5% of area compare to the Normal AES 
SBOX area to a maximum of 21%. 

The  proposed  future  works  to  develop  the  
circuit for error detection using sub pipeline 
architecture. 
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