
Research Journal of Applied Sciences, Engineering and Technology 10(7): 758-769, 2015
DOI:10.19026/rjaset.10.2428
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2015 Maxwell Scientific Publication Corp.
Submitted: July 24, 2014 Accepted: October 12, 2014 Published: July 10, 2015

Corresponding Author: B. Kavitha. MIT Campus, Anna University, Chennai, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

758

Research Article

Cost Optimization Using Hybrid Evolutionary Algorithm in Cloud Computing

1B. Kavitha and 2P. Varalakshmi

1Anna University, Chennai, India
2Department of Information Technology, MIT, Anna University, Chennai, India

Abstract: The main aim of this research is to design the hybrid evolutionary algorithm for minimizing multiple
problems of dynamic resource allocation in cloud computing. The resource allocation is one of the big problems in
the distributed systems when the client wants to decrease the cost for the resource allocation for their task. In order
to assign the resource for the task, the client must consider the monetary cost and computational cost. Allocation of
resources by considering those two costs is difficult. To solve this problem in this study, we make the main task of
client into many subtasks and we allocate resources for each subtask instead of selecting the single resource for the
main task. The allocation of resources for the each subtask is completed through our proposed hybrid optimization
algorithm. Here, we hybrid the Binary Particle Swarm Optimization (BPSO) and Binary Cuckoo Search algorithm
(BCSO) by considering monetary cost and computational cost which helps to minimize the cost of the client.
Finally, the experimentation is carried out and our proposed hybrid algorithm is compared with BPSO and BCSO
algorithms. Also we proved the efficiency of our proposed hybrid optimization algorithm.

Keywords: Binary cuckoo search, binary particle swarm optimization, computational cost, levy flights, monetary

cost

INTRODUCTION

With the rapid development of processing and
storage technologies and the success of the Internet,
computing resources have become cheaper, more
powerful and more ubiquitously available than ever
before. This technological trend has enabled the
realization of a new computing model called Cloud
computing (Zhang et al., 2010). As a realization of
utility computing, cloud computing aims to provide
computing resources to customers like public utilities
such as water and electricity. In a cloud computing
environment, an Infrastructure-as-a-Service (IaaS)
provider packages its physical resources (e.g., CPU,
memory disk) into distinct types of Virtual Machines
(VMs) in terms of their sizes and features and offers
them as services to the general public (Zhang et al.,
2011). Also it delivers an infrastructure, platform and
software (applications) as Services that are made
available to consumers in a pay-as-you-go model. In
industry these services are referred to as Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS) respectively. Many
computing service providers including Google,
Microsoft, Yahoo and IBM are rapidly deploying data
centers in various locations around the world to deliver
Cloud computing services (Beloglazov et al., 2012). At
the same time computing and information processing
requirements of various public organizations and

private corporations have also been increasing rapidly.
Examples include digital services and functions
required by the various industrial sectors, ranging from
manufacturing to housing, from transportation to
banking (Goudarzi and Pedram, 2011).

Particle Swarm Optimization (PSO) (Kennedy and
Eberhart, 1995; Eberhart and Kennedy, 1995), is one of
the most important swarm intelligence paradigms. The
PSO uses a simple mechanism that mimics swarm
behavior in birds flocking and fish schooling to guide
the particles to search for globally optimal solutions. As
PSO is easy to implement, it has rapidly progressed in
recent years and with many successful applications seen
in solving real-world optimization problems (Ho et al.,
2008; Zhan et al., 2009). PSO is distinctly different
from other evolutionary-type methods in that it does not
use the filtering operation (such as crossover and/or
mutation) and the members of the entire population are
maintained through the search procedure. In PSO
algorithm, each member is called “particle” and each
particle flies around in the multi-dimensional search
space with a velocity, which is constantly updated by
the particle’s own experience and the experience of the
particle’s neighbors. The main idea behind the
development of PSO is the social sharing of
information among individuals of population. In PSO
algorithms, search is conducted by using a population
of particles, corresponding to individuals as in the case
of evolutionary algorithms. Each particle adjusts its

Res. J. Appl. Sci. Eng. Technol., 10(7): 758-769, 2015

759

own position towards its previous experience and
towards the best previous position obtained in the
swarm. Memorizing its best own position establishes
the particle’s experience implying a local search along
with global search emerging from the neighboring
experience or the experience of the whole swarm.
According to the global neighborhood, each particle
moves towards its best previous position and towards
the best particle in the whole swarm, called G-best
model. On the other hand, according to the local
variant, called L-best model, each particle moves
towards its best previous position and towards the best
particle in its restricted neighborhood (Kennedy et al.,
2001; Taşgetiren and Liang, 2003). The Cuckoo Search
(CS) (Yang and Deb, 2009, 2010), is a new meta-
heuristic algorithm imitating animal behavior. The
optimal solutions obtained by the CS are far better than
the best solutions obtained by efficient particle swarm
optimizers and genetic algorithms (Yang and Deb,
2009). The CS models such breeding behavior and,
thus, can be applied to various optimization problems.
Cuckoo Search Algorithm is based on the brood
parasitism of some cuckoo species (Brajevic et al.,
2012; Yang and Deb, 2009, 2010; Layeb and Boussalia,
2012; Valian et al., 2011a), discovered that the
performance of the CS can be improved by using Levy
Flights instead of simple random walk. The CS was
inspired by the obligate brood parasitism of some
cuckoo species by laying their eggs in the nests of host
birds. Some cuckoos have evolved in such a way that
female parasitic cuckoos can imitate the colors and
patterns of the eggs of a few chosen host species
(Valian et al., 2011b). This reduces the probability of
the eggs being abandoned and, therefore, increases their
re-productivity. It is worth mentioning that several host
birds engage direct conflict with intruding cuckoos (Jati
et al., 2012; Valian et al., 2011a). In this case, if host
birds discover the eggs are not their own, they will
either throw them away or simply abandon their nests
and build new ones, elsewhere (Dhivya et al., 2011;
Babukartik and Dhavachelvan, 2012). For simplicity in
describing the cuckoo search, consider the following
three idealized rules:

 Each cuckoo lays one egg at a time and dump its

egg in randomly chosen nest.
 The best nests with high quality of eggs will carry

over to the next generations.
 The number of available host nests is fixed and the

egg laid by a cuckoo is discovered by the host bird
(Rani et al., 2012; Noghrehabadi et al., 2011).

The effective way of choosing an optimization
algorithm can further improve the results, specifically
for resource allocation.

In this study, we develop hybrid optimization
algorithm for dynamic resource allocation in cloud
computing for minimizing the cost of the client. The
main task of the client is divided into many subtasks

and allocates the resource for each subtask instead of
selecting the single resource for the whole entire task.
The total cost of the client is calculated using the
proposed fitness function taking the monetary cost and
computational cost into account. Here, we hybrid two
optimization algorithm such as Binary Cuckoo Search
Optimization (BCSO) algorithm and Binary Particle
Swarm Optimization (BPSO) algorithm to assign cloud
resources to the tasks so as to minimize the cost of the
client.

In BCSO algorithm, initialization matrix is
generated based on the number of resources and
number of subtasks. Each cuckoo particle is evaluated
in the initialization matrix through the objective
function. The cuckoo particle is updated based on levy
flights and the fitness function is evaluated. This
process is repeated for a given number of iterations.
The fitness value is compared with the previous fitness
value in each iteration and the minimum fitness value is
considered to be the best solution.

In BPSO algorithm, the initialization matrix is
generated as the number of resources and subtasks. A
velocity matrix is generated randomly for the
initialization matrix and the fitness function is
evaluated. The G-best and P-best values are set with the
initial P-best value and then the particle’s velocity and
position are updated in the matrix. The iteration starts
with the computation of fitness function using the
updated matrix and arrived result is the current P-best
value. If this P-best value, is lesser than the previous G-
best value, then G-best is updated with that new P-best
value. This cycle is repeated for a given number of
iterations. The final G-best value obtained after all
iterations is the optimal solution.

In the proposed algorithm, initially the BCSO
algorithm is used which makes the initialization matrix
based on the number of subtask at first subsequently it
calculates the fitness value for each subtask of the
initialization matrix and assigns fitness values to G-best
of BPSO algorithm. Then, BPSO algorithm updates the
initialization matrix through the levy flights and
sigmoid function. The updation matrix of the BCSO
algorithm is assigned to BPSO algorithm as
initialization matrix. Now the BPSO algorithm starts its
process by generating the velocity matrix randomly for
the initialization matrix and consequently it calculates
the fitness for each particle of the initialization matrix
and also updates the values of G-best and P-best. After
the updation of G-best and P-best, the BPSO algorithm
updates its velocity matrix through the updated velocity
and sigmoid function. The updated initialization matrix
is assigned to BCSO algorithm. This cyclic process
repeats up to K number of iterations in order to obtain
an optimal resource allocation for the client’s task. The
main objective of this research is to meet the multiple
objectives through hybrid evolutionary algorithm for
effective resource allocation scheme for cloud
computing which is attained through proposed fitness
function, which includes of monetary cost and
computational cost as multiple objectives.

Res. J. Appl. Sci. Eng. Technol., 10(7): 758-769, 2015

760

LITERATURE REVIEW

Here, a review of some of the works are presented
for resource allocation in cloud computing. Yin et al.
(2012) have proposed a multi-dimensional resource
allocation scheme for cloud computing that
dynamically allocates the virtual resources for the cloud
computing applications with reduced cost by using
fewer nodes to process the applications. They adopted a
two-stage algorithm using multi-constraint integer
programming problem. Experimental results shows the
improved resource utilization and reduced cost of data
center. Warneke and Kao (2011) have discussed the
opportunities and challenges for efficient parallel data
processing in clouds and present their research project
Nephele. Nephele was the first data processing
framework to explicitly exploit the dynamic resource
allocation offered by today’s IaaS clouds for both, task
scheduling and execution. Particular tasks of a job
could be assigned to different types of virtual machines
which were automatically instantiated and terminated
during the job execution. Based on these frameworks,
they perform the extended evaluations of Map Reduce-
inspired processing jobs on an IaaS cloud system and
compared the results to the popular data processing
framework Hadoop.

Stillwell et al. (2010) have proposed a formulation
of the resource allocation problem in shared hosting
platforms for static workloads with servers that provide
multiple types of resources. Their formulation supports
a mix of best effort and QoS scenarios and, via a
precisely defined objective function, promotes
performance, fairness and cluster utilization. Further,
these formulations make it possible to compute a bound
on the optimal resource allocation. They have several
classes of resource allocation algorithms, which have
been evaluated in simulation. They were able to
identify an algorithm that achieved average
performance close to the optimal across many
experimental scenarios.

Xiao et al. (2013) have presented a system that
uses virtualization technology for allocating data center
resources dynamically based on application demands
and support green computing by optimizing the number
of servers in use. They introduced the concept of
“skewness” to be measured the unevenness in the multi-
dimensional resource utilization of a server. By
minimizing skewness, they combined different types of
workloads and improved the overall utilization of
server resources. Finally, they developed a set of
heuristics that prevent the overload in the system
effectively while saving the energy used. Trace driven
simulation and experiment results was demonstrated to
show case the algorithm achieved a good performance.

Onat et al. (2010) have investigated a dynamic
autonomous resource management in cloud computing.

The main contribution has two-fold. First, they adopt a
distributed architecture where resource management
has decomposed into independent tasks, each of which
was performed by Autonomous Node Agents that were
tightly coupled with the physical machines in a data
center. Second, the Autonomous Node Agents carry out
configurations in parallel through Multiple Criteria
Decision Analysis. Simulation results showed that the
promising effects in terms of scalability, feasibility and
flexibility.

Gogulan et al. (2012) have introduced a algorithm
called Multiple Pheromone Algorithm (MPA) which
has belongs to Ant Colony Optimization Algorithm.
The objective of MPA algorithm was to dynamically
generate an optimal schedule so as to be completed the
task in minimum period of time as well as utilizing the
resources in an efficient way. They have three different
Quality of Service (QoS) make span, cost and reliability
constraints were considered as performance measure for
scheduling. Finally, the algorithm was compared with
normal Ant Colony Algorithm (ACO) and Genetic
Algorithm (GA). With the implementation of the
Multiple Pheromone Algorithm (MPA), it reached an
optimal solution as well as obtained the better QoS than
ACO and GA.

Pawar and Wagh (2012) have evaluated various
policies for resource allocation in cloud computing
based on Service-Level-Agreement (SLA), centralized
decision and distributed multiple criteria decision. And
also how different services i.e., Infrastructure as a
Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS) contribute in resource
allocation. Lastly they discussed the pros and cons of
each policy. An et al. (2010) have proposed an
alternative approach where providers and consumers
automatically negotiate resource leasing contracts.
Since resource demand and supply could been dynamic
and uncertain, they distributed negotiation mechanism
where agents negotiate over both a contract price and a
de-commitment penalty, which allows agents to de-
commit from contracts at a lower cost. They compared
their approach experimentally, for used representative
scenarios and workloads, to both combinatorial
auctions and the fixed-price model used by Amazon’s
Elastic Compute Cloud and showed that the negotiation
was achieved a higher social welfare.

In cloud computing, the resource allocation for a
task with the minimum cost is a challenging criterion.
This problem is solved by computing the total cost
using the monetary cost and the computational cost for
the task. Evolutionary algorithms like Cuckoo Search
and Particle Swarm Optimization can be utilized to
achieve the minimum cost. Here we propose a hybrid
optimization algorithm using BCSO and BPSO
algorithms so as to achieve better results.

Res. J. Appl. Sci. Eng. Technol., 10(7): 758-769, 2015

761

PROPOSED HYBRID OPTIMIZATION

ALGORITHM

In this study, we develop hybrid optimization
algorithm for dynamic resource allocation in cloud
computing. Here, we hybrid two optimization
algorithms such as Binary Cuckoo Search Optimization
(BCSO) algorithm and Binary Particle Swarm
Optimization (BPSO) algorithm to schedule tasks to
cloud resources, that takes into account both monetary
cost and computational cost. Monetary Cost (MC) is the
cost which is allotted by the service provider as the
maintenance cost of the resources which includes
electricity, building, cooling etc., to the client to utilize
the resources to do the client’s task. This cost may
differ from one service provider to another for the same
task. Computational Cost (CC) is also assigned by the
service provider based on the computational complexity
of the task assigned by client to the resource. The
computational cost also differs from one service
provider to another since the computational complexity

includes the number of core required, required memory
space, bandwidth etc. Cloud service providers invest
70% of the cost for the maintenance of the data center
where as only 30% of the cost is spent on actual IT
resources.

To reduce the overall cost of the resource
allocation for the task of the clients, here we divide the
main task into many subtasks instead of selecting the
best resource among the available resources for the
whole task. Also the proposed algorithm selects and
allocates the best resources for each subtask from the
available resources through the hybrid optimization
algorithm which includes BPSO and BCSO algorithm.
This hybrid optimization algorithm helps to reduce the
monetary cost and computational cost of each subtask.

The architecture of the proposed system is shown
in Fig. 1. The client submits a task T and desires to
complete the task with less cost and efficient
computation through the cloud service providers.
Consider there are n number of available resources
R = {R1, R2…Ri ... Rn} where 1in in the cloud to do

Fig. 1: Architecture of the proposed system

Res. J. Appl. Sci. Eng. Technol., 10(7): 758-769, 2015

762

Table 1: Monetary cost of resources for each subtask
 Resource

--
Subtask R1 R2 Ri Rn-1 Rn

t1 MC1, 1 MC1, 2 MC1, i MC1, n-1 MC1, n

t2 MC2, 1 MC2, 2 MC2, i MC2, n-1 MC2, n

tj MCj, 1 MCj, 2 MCj, i MCj, n-1 MCj, n

tm-1 MCm-1, 1 MCm-1, 2 MCm-1, i MCm-1, n-1 MCm-1, n

tm MCm, 1 MCm, 2 MCm, i MCm, n-1 MCm, n

Table 2: Computational cost of resources for each subtask
 Resource

Subtask R1 R2 Ri Rn-1 Rn

t1 CC1, 1 CC1, 2 CC1, i CC1, n-1 CC1, n

t2 CC2, 1 CC2, 2 CC2, i CC2, n-1 CC2, n

tj CCj, 1 CCj, 2 CCj, i CCj, n-1 CCj, n

tm-1 CCm-1, 1 CCm-1, 2 CCm-1, i CCm-1, n-1 CCm-1, n

tm CCm, 1 CCm, 2 CCm, i CCm, n-1 CCm, n

the task T. To improve the efficiency and reduce the
total cost of the task T, we divide the main task T into m
number of subtasks T = {t1, t2 ..tj .. tm} where 1jm. To
complete the task with efficient way along with less
cost, we consider the two costs such as monetary cost
and computational cost at the same time. To achieve
this, we develop hybrid optimization algorithm for
dynamic resource allocation in cloud.

Resource allocation based on the input demand is a
challenging issue in cloud, since both resource
allocation and input demand must be satisfied for
multiple constraints. So the allocation of resources for
an input demand is increasing day-by-day in cloud
computing resource management system. But the major
problem is handling of real time constraints such as,
monetary cost and computational cost. To handle all
these criteria, we develop a resource allocation
algorithm called hybrid optimization algorithm to do
resource allocation dynamically in cloud computing.
For example, let us consider that, the main task T is
divided into 5 subtasks t1, t2, t3, t4, t5 and there are seven
resources R1, R2, R3, R4, R5, R6, R7 available from the
cloud. For each subtask our proposed algorithm helps to
select the better resource based on the monetary cost
and computational cost.

Hybrid optimization algorithm: Normally client
desires to access the resources with minimum cost, so
that the client will be benefited. Here, we consider
monetary cost and computational cost for computing
the total cost of the resources. For that we hybrid the
two algorithms such as BCSO and BPSO to achieve the
minimum total cost.

Each of the resources in the cloud assigns the
Monetary Cost (MC) and Computational Cost (CC) for
each subtask tj. Table 1 and 2 represent the monetary
cost and computational cost of m number of subtask
with respect to n number of resources.

Figure 2 represents the work flow of the proposed
hybrid optimization algorithm. This hybrid optimization
algorithm contains two optimization algorithms such as

Fig. 2: Work flow of the proposed hybrid optimization

algorithm

BCSO and BPSO. To begin with, the initialization
matrix n×m is generated and assigned to the BCSO
algorithm and then the fitness value is calculated to find
the best resource for each subtask. The fitness value of
the BCSO algorithm is assigned as initial G-best and P-
best values of the BPSO algorithm. Now initialization
matrix of the BCSO algorithm is updated via levy
flights. After that, the updated matrix of the BCSO
algorithm is handed over to BPSO algorithm as
initialization matrix. Now at this time, the BPSO
algorithm initializes its process by generating the
velocity matrix randomly for its initialization matrix as
the size n×m. Subsequently BPSO find the best
resource for each subtask through a fitness function.
The arrived fitness value (P-best) is compared with the
existing G-best value. If the fitness value is less than
the G-best value, then G-best and P-best values are
updated with the fitness value. Otherwise only P-best
value is updated with the fitness value. The matrix n×m
of BPSO is updated through the velocity calculation

BCSO

Initialization
matrix n m

Fitness function
calculation

Fitness of each
subtask

Matrix updation
based on levy
flights n m

BPSO

Velocity matrix n m

Fitness function
calculation

Update G-best
and P-best

Matrix updation based
on particle’s velocity

Hybrid optimization algorithm

Res. J. Appl. Sci. Eng. Technol., 10(7): 758-769, 2015

763

Table 3: Parameters used
Symbol Functionality of the symbol
n Number of resources
m Number of subtasks
MC Monetary cost
CC Computation cost
K Iteration counter of BCSO
 Iteration counter of BPSO
K Maximum number of iterations
F (tk

j) Fitness of jth subtask at kth iteration
CCji Communication cost of jth task with ith resource
MCji Monetary cost of jth task with ith resource

and particle’s position updation. The cycle is completed
after submitting the updated matrix of BPSO algorithm
to BCSO algorithm as its initialization matrix. This
process is repeated for K number of iterations. Finally,
the best resource for each subtask is selected from the
G-best value of BPSO which is given below.
Parameters used are given in Table 3.

Algorithm:

Input: m number of subtasks, n number of resources,
monetary cost, computational cost of n number of
resources for m number of subtasks.
Output: Minimum cost of resource allocation for each
subtask.
Begin
 BCSO algorithm
 Set k = 0
 Generate initialization matrix n×m
 For each particle
 Get the value of MC and CC
 Calculate fitness f (t kj) = MCj+CCji
 Call Particle updation of BCSO
 End for
 Assign the fitness of each particle as G-best of BPSO
algorithm

BPSO algorithm
Get the updation matrix from BCSO algorithm as
initialization matrix n×m
 Set  = 0
 Generate the velocity matrix of the initialization
matrix n x m
 For each particle
 Get the value of MC and CC
 Calculate fitness f (t kj) = MCji+CCji
 Update G-best and P-best
 Call Particle updation of BPSO
 End for
End

Hybrid optimization algorithm:
Subroutine: Particle updation of BCSO
 Set k = k+1
 Calculate 
 Calculate U and V
 Calculate step
 Calculate step size
 Apply the step size value of particle to sigmoid
function
Generate rand (0, 1)
 If sigmoid function>1
 Particle become 1
 Else
 Particle become 0

Subroutine: Particle updation of BPSO
Set  = +2
Calculate v
Calculate updated velocity
Apply updated velocity to sigmoid function
Generate rand (0, 1)
If sigmoid function>1
 Particle become 1
 Else
 Particle become 0

BCSO and BPSO procedures are explained briefly.

Binary cuckoo search optimization: BCSO consists
of four steps such as generation of initialization matrix,
computing fitness function, particle updation and
position updation which are explained in this section.

Initialization matrix: Initially the value of iteration
counter k is assigned as zero. After the every iteration
the value of the iteration counter gets increase by one.
Generate the initialization matrix n x m where n and m
represent, the number of resources and number of
subtasks. In the initialization matrix if the resource Ri is
allocated to the subtask tj in kth, it is represented as ‘1’,
otherwise ‘0’. An example initialization matrix is
shown in Table 4.

Fitness function: To evaluate fitness of each cuckoo
particle from the initialization matrix, the fitness
function is computed. The fitness function includes the
monetary cost and computational cost of the resources
(dimension) for each subtask (cuckoo particle).
Equation (1) is used to calculate the fitness value based
on the monetary cost and the computational cost:

Table 4: Initialization matrix
 Resource

Subtask x/d R1 R2 Ri Rn-1 Rn

tk
1 xk

1d 1 0 0 0 0
tk

2 xk
2d 0 0 0 0 1

tk
j xk

jd 0 0 1 0 0
tk

m-1 xk
m-1d 1 0 0 0 0

tk
m xk

md 0 1 0 0 0

Res. J. Appl. Sci. Eng. Technol., 10(7): 758-769, 2015

764

Table 5: Example initialization matrix
 Resource

Subtask x/d R1 R2 R3 R4 R5 R6 R7

t0
1 x0

1d 0 0 0 1 0 0 0
t0

2 x0
2d 1 0 0 0 0 0 0

t0
3 x0

3d 0 0 0 0 1 0 0
t0

4 x0
4d 1 0 0 0 0 0 0

t0
5 x0

5d 0 1 0 0 0 0 0

Table 6: Example initialization matrix with corresponding fitness
 Resource

--
Subtask x/d R1 R2 R3 R4 R5 R6 R7 Fitness
t0

1 x0
1d 0 0 0 1 0 0 0 1.486

t0
2 x0

2d 1 0 0 0 0 0 0 0.542
t0

3 x0
3d 0 0 0 0 1 0 0 1.286

t0
4 x0

4d 1 0 0 0 0 0 0 1.651
t0

5 x0
5d 0 1 0 0 0 0 0 1.812

  jiji

k
j MCCCtf 

 (1)

In the Eq. (1), the value of f (tk

j) represents the total
cost of jth subtask at the ith resource in the kth iteration.

As an example, in the Table 5, the subtask t1 is
assigned to the resource R4. Based on this data, we
select the values MC14 and CC14 as the value of the
monetary cost and the computational cost of the subtask
t1 with respect to the resource R4 and the computed
fitness values are shown in Table 6.

The fitness of the each cuckoo particle is assigned
as G-best to the BPSO algorithm for the further use. If
the calculated fitness value of any particle is less than
the existing fitness value, G-best value is updated with
that of the calculated fitness value.

Cuckoo particle updation: In nature, animals search
for food in a random or quasi-random manner.
Generally, the foraging path of an animal is effectively
a random walk because the next move is based on both
the current location/state and the transition probability
to the next location. The chosen direction implicitly
depends on a probability, which can be modeled
mathematically. Various studies have shown that the
flight behavior of many animals and insects
demonstrates the typical characteristics of Levy flights
(Dhivya et al., 2011). A Levy flight is a random walk in
which the step-lengths are distributed according to a
heavy-tailed probability distribution. After a large
number of steps, the distance from the origin of the
random walk tends to be a stable distribution. Each
dimension of the every cuckoo particle is updated
through levy flights. The Eq. (2) to (6) are used to
update the every dimension of each particle of the
initialization matrix. The values of , , rand are the
random values between 0 and 1. The value of R (n) in
the Eq. (3) represents the random value between 0 to n
where n represents the total number of available
resources to do the m number of subtasks:

  

 










1

2
1

2
2

1

2
sin1














































 








 





 (2)

  *nRU  (3)

 nRV  (4)

 


1
~ V

U
xstep k
jd 

 (5)

  steprandxsizestep k
jd *

 (6)

Here xk

jd is the jth particle position at the kth
iteration in the dimension d, where d represents the
resource number, U and V are normally distributed
stochastic variables with standard deviation ().
Equation (6) represents the calculation of step size
value necessary to update the dimension.

Position updation in BCSO algorithm: The
dimension of the each cuckoo particle is updated based
on step size value of that particle. The step size value of
the each dimension of every cuckoo particle is applied
into the sigmoid function, given in the Eq. (7) and the
updated value becomes “0” or “1” through the
condition which is represented in the Eq. (8):

    k
jdxsizestep

k
jd

e

xsizestepS






1

1

 (7)

      

0

11,0





k
jd

k
jd

k
jd

xelse

xthenxsizestepSrandif

(8)

Res. J. Appl. Sci. Eng. Technol., 10(7): 758-769, 2015

765

Table 7: Fitness for each swarm particle in BPSO algorithm

Resource
--

Subtask x/d R1 R2 R3 R4 R5 R6 R7 Fitness
t1

1 x1
1d 1 0 0 0 0 0 0 1.480

t1
2 x1

2d 0 1 0 0 0 0 0 1.002
t1

3 x1
3d 0 0 0 1 0 0 0 0.283

t1
4 x1

4d 0 1 0 0 0 0 0 0.893
t1

5 x1
5d 0 0 0 1 0 0 0 0.578

Table 8: Values of G-best and p-best values for each iteration

Particles

Iteration counter  = 1

Iteration counter  = 2
--

G-best P-best G-best P-best
x1 1.486 1.486 1.480 1.480
x2 0.542 0.542 0.542 1.002
x3 1.286 1.286 0.283 0.283
x4 1.651 1.651 0.893 0.893
x5 1.812 1.812 0.578 0.578

While updating the particle in each iteration, if the

subtask is assigned to more than 1 resource at a time,
the fitness value of each resource is calculated first and
then the resource having a minimum fitness value is
selected.

Binary particle swarm optimization: There are four
steps involved in BPSO. They are, generating
initialization matrix, generating velocity matrix,
computing fitness values, velocity updation and
position updation which are explained in this section
briefly.

Initialization matrix: The updation matrix n x m of the
BCSO algorithm is given to the BPSO algorithm as
initialization matrix. The BPSO algorithm process the
received updated matrix from the BCSO algorithm to
find the global best value (G-best) and local best (P-
best).

Velocity matrix: The updating process of the BPSO
algorithm is based on the velocity matrix n x m which
is generated randomly as the same size of the
initialization matrix. The generation of velocity matrix
is completed before the calculation of fitness function.
The velocity of the particle is represented by jd in
which j represents number of subtask, d represents
dimension of the particle and  represents the iteration
counter value. The value of the iteration counter  is
initiated from 0 and is incremented by two (i.e., 0, 2, 4
and 6, respectively) every time.

Fitness function: The fitness function includes the
monetary cost and computational cost of the resources
for each subtask. The fitness function used in the BCSO
algorithm is also used in BPSO algorithm as
represented in the Eq. (1). Fitness values for the
initialization matrix of the BPSO algorithm are given in
Table 7.

Table 8 represents the values of G-best and P-best
for two iterations. In the first iteration, the value

obtained from the output of the BCSO algorithm, is
assigned as the G-best as well as P-best of BPSO i.e.,
both G-best and P-best values are same initially. Now
the value of  is initialized to 0. The updation matrix of
the BCSO algorithm is assigned as initialization matrix
to the BPSO algorithm and the velocity matrix is
generated randomly for the assigned initialization
matrix. Subsequently the fitness value for each particle
of the initialization matrix is calculated. If arrived
fitness value is less than the existing fitness value, G-
best and P-best values are updated with the current
fitness value. Otherwise only the value of P-best gets
updated with the arrived fitness value.

For example in Table 8, at the initial iteration the
particle x1 has the fitness value 1.486 and the value of
G-best and P-best both becomes the same (1.486). But
in the second iteration, the particle x1 has the fitness
value 1.480 which is less than previous iteration fitness
value. Now G-best value becomes 1.480 and the P-best
also becomes 1.480. Whereas in the initial iteration, the
particle x2 has the fitness value 0.542 and the value of
G-best and P-best both becomes same (0.542). But in
the second iteration the particle x2 has the fitness value
1.002 which is higher than previous fitness value
(0.542). So G-best is not changed (remains as 0.542)
but the P-best value is changed into 1.002.

Velocity updation: After calculating the fitness of
every particle of the matrix, the next step is to update
particle position. Before that velocity of the particle
should be updated. The Eq. (9) and (10) are used to
update the (particle) velocity. w is used to control the
impact of the previous velocities on the current
velocity:

   								xgbrcxpbrcv k
jd

k
jd

k
jd

k
jdjd  2211


 (9)

τ
jd

τ
jd

2τ
jd vΔ]v[wv 

 (10)

Res. J. Appl. Sci. Eng. Technol., 10(7): 758-769, 2015

766

where,
௝ௗݒ∆

ఛ : Change in the Velocity of jth particle at th
iteration in dimension d

c1, c2 : Acceleration constants
r1, r2 : Random numbers in the interval (0, 1)
pbk

jd : P-best value of jth particle at kth iteration in
dimension d

xk
jd : Position of jth particle at kth iteration in the

dimension d
gbk

jd : G-best value of jth particle at kth iteration in
dimension d

௝ௗݒ
ఛ : Updated Velocity of jth particle at  iteration in

dimension d
௝ௗݒ
ఛାଶ : Updated Velocity of jth particle at +2 iteration

in dimension d
w : Inertia weight

Position updation in BPSO algorithm: With the help
of updated velocity of each dimension of the particle,
the BPSO algorithm updates the every dimension of the
particle. The Eq. (11) and (12) are used to update the
each dimension of the particle matrix. The updated
matrix is given as the next input of BCSO algorithm:

   2τ
jdv

2τ
jd

e1

1
vS








 (11)

     
	xelse

xthenvSrandif

jd

jdjd

0

11,0 2



 





(12)

While updating the particle in each iteration, if the
subtask is assigned to more than 1 resource at a time,
the fitness value of each resource is calculated at first
and then the resource having a minimum fitness value
is selected. The proposed hybrid algorithm stops when
a predefined number of iterations are completed.

IMPLEMENTATION AND RESULTS

The experimental results of the proposed technique
for hybrid optimization algorithm for dynamic resource
allocation are described in this section. In this study, we
compare our proposed hybrid algorithm with BPSO
algorithm and BCSO algorithm.

The proposed hybrid optimization algorithm is
implemented with Cloudsim version 2.1.1. The
experimentation has been carried out using the
synthetic dataset with i3 processor PC machine with 4
GB main memory and 32 bit version of windows 7
operating system. The two synthetic datasets are
generated in times of interval based on the number of
subtask and available resources. Also each of the
synthetic dataset consists of monetary cost and
computational cost of each task with respect to all
resources.

In this study, our main aim is to allocate the
resource with minimum amount of monetary cost as
well as computational cost. Here the total cost of the
task is taken as the evaluation metrics. The total cost is
calculated by the summation of fitness (G-best) value of
every subtask. The evaluation is carried out with the
total cost by varying the number resources and number
of subtasks. Equation (13) is used to find the Total Cost
(TC) of the task:

  	tfTC
m

j
j




1 (13)

The performance evaluation of the proposed hybrid

optimization algorithm is prepared by comparing with
the binary cuckoo search algorithm and binary particle
swarm optimization.

 Figure 3a and b represents the performance of the
25 number of resources and 20 numbers of subtasks

 (a) (b)

Fig. 3: Cost estimation for 25 resources and 20 subtasks, (a) dataset D1, (b) dataset D2

0

5

10

15

20

25

5 10 15 20 25
Number of iteration

To
ta

l c
os

t

BCSO

BPSO

PROPOSED

0

5

10

15

20

25

5 10 15 20 25
Number of iteration

To
ta

l c
os

t

BCSO

BPSO

PROPOSED

Res. J. Appl. Sci. Eng. Technol., 10(7): 758-769, 2015

767

 (a) (b)

Fig. 4: Cost estimation for 25 resources (a) dataset D1, (b) dataset D2

 (a) (b)

Fig. 5: Cost estimation for 25 resources and 20 subtasks, (a) dataset D1, (b) dataset D2

respectively. For the dataset D1, the proposed algorithm
performed 14.87% less than BCSO and 24.14% less
than BPSO. For the dataset D2, the proposed algorithm
is 13.17% less than BCSO and 20.58% less than BPSO
algorithm.

From the available results, it is concluded that the
total cost of the proposed algorithm is less than the cost
of BCSO algorithm and BPSO algorithm. At each level,
the value of total cost is high in the BPSO algorithm
when compared with other two algorithms. In both
datasets D1 and D2, for a given number of resources
and subtasks, as the number of iterations increase, the
cost of the task reduces slowly in the case of BPSO
algorithm and BCSO algorithm. But in the case of the
proposed algorithm the cost remains almost constant.
The proposed algorithm gives the minimum cost for the
task “T” with minimum number of iterations by
selecting the resources which has the minimum cost
from the available resources during the updation
process of particle at the every iteration.

Figure 4a and b represents the performance of the
BCSO, BPSO and the proposed algorithm for 25
resources, 35 iterations for the datasets D1 and D2

respectively with varying subtasks. As the number of
subtasks increases, the total cost of the task keeps
increasing in all the three algorithms. At any level of
subtasks, for a given number resources the cost
achieved by the proposed method is less than the cost
achieved by BCSO and BPSO. For the dataset D1, the
proposed algorithm obtains the cost 10.80% less than
BCSO algorithm as well as 21.10% less than BPSO
algorithm, similarly for the dataset D2, the proposed
algorithm is 10.51% less than BCSO and 19.76% less
than BPSO algorithm.

Figure 5a and b represents the performance of the
BPSO, BSCO and BPSO-BCSO algorithms for the
datasets D1 and D2 with 25 numbers of resources and
20 number of subtasks respectively. In BPSO-BCSO
algorithm, the output of BPSO is given as the input to
BCSO to find the total cost which is a reverse
procedure of the proposed hybrid algorithm.

Results obtained shows that, even if the hybrid
combination is reversed the outcome is almost same as
the proposed algorithm, since the G-best value is
updated in each iteration.

0

5

10

15

20

25

5 10 15 20 25
Number of iteration

To
ta

l c
os

t

BCSO

BPSO

BPSO-BCSO

0

5

10

15

20

25

5 10 15 20 25
Number of iteration

To
ta

l c
os

t

BCSO

BPSO

BPSO-BCSO

0

5

20
25

30

45

10 20 30 40 50
Number of tasks

To
ta

l c
os

t
BCSO

BPSO

PROPOSED

10

15

35

40

50

0

5

20
25

30

45

10 20 30 40 50
Number of tasks

To
ta

l c
os

t

BCSO

BPSO

PROPOSED

10

15

35

40

50

Res. J. Appl. Sci. Eng. Technol., 10(7): 758-769, 2015

768

Table 9: Average performance of the three algorithms

Number of
resources

D1 dataset
--

D2 dataset
--

BCSO BPSO Proposed BCSO BPSO Proposed
25 23.84 26.96 21.27 24.48 27.31 21.91
50 22.99 26.84 20.46 23.73 26.92 21.15
100 22.64 26.54 19.84 23.44 26.83 20.05

Table 9 represents the average performance of the

proposed hybrid algorithm, BCSO and BPSO
algorithms for the numbers of resources, n = 25, 50 and
100 and 35 number of iterations.

From the Table 9, it is predicted that, if the number
of resources are increased, the total cost reduces. The
proposed algorithm also demonstrates the robustness of
the results obtained.

CONCLUSION

We proposed a hybrid optimization algorithm for

dynamic resource allocation in cloud computing.
Initially, the BCSO algorithm generates the
initialization matrix as per the number of subtasks and
resources. Subsequently it calculates the fitness value
for each particle of the initialization matrix based on the
monetary cost and computational cost. The fitness of
the particle is assigned to BPSO algorithm as G-best
and P-best, then the initialization matrix of the BCSO
algorithm gets updated through the levy flights and
sigmoid function and then updated matrix is assigned to
BPSO algorithm as initialization matrix. The BPSO
algorithm generates the velocity matrix randomly for
the initialization matrix and then calculates the fitness
value. Based on the arrived fitness value, the values of
G-best and P-best are updated. The BPSO algorithm
updates the matrix through the updated velocity and
sigmoid function. The updated matrix is assigned then
to BCSO algorithm. This cyclic process is repeated up
to k number of iterations. The experimentation is
carried out and the results of the proposed hybrid
algorithm are compared with that of the BCSO and
BPSO algorithm. The proposed hybrid algorithm gives
better cost optimized results compared to BCSO and
BPSO algorithms. The hybrid combination of other
evolutionary algorithms can be carried out for further
scope.

REFERENCES

An, B., V. Lesser, D. Irwin and M. Zink, 2010.

Automated negotiation with decommitment for
dynamic resource allocation in cloud computing.
Auton. Agent. Multi-Ag., 1(1): 981-988.

Babukartik, R.G. and P. Dhavachelvan, 2012. Hybrid
algorithm using the advantage of ACO and cuckoo
search for job scheduling. Int. J. Inform. Technol.
Convergence Serv., 2(4): 25-34.

Beloglazov, A., J. Abawajy and R. Buyya, 2012.
Energy-aware resource allocation heuristics for
efficient management of data centers for cloud
computing. Future Gener. Comp. Sy., 28: 755-768.

Brajevic, I., M. Tuba and N. Bacanin, 2012. Multilevel
image thresholding selection basedon the cuckoo
search algorithm. Proceeding of the Advances in
Sensors, Signals, Visualization, Imaging and
Simulation (VIS, 2012), pp: 217-222.

Dhivya, M., M. Sundarambal and L.N. Anand, 2011.
Energy efficient computation of data fusion in
wireless sensor networks using cuckoo based
particle approach. Int. J. Commun. Network Syst.
Sci., 4: 249-255.

Eberhart, R.C. and J. Kennedy, 1995. A new optimizer
using particle swarm theory. Proceeding of 6th
International Symposium Micromachine Human
Science. Nagoya, Japan, pp: 39-43.

Gogulan, R., A. Kavitha and U.K. Kumar, 2012. An
multiple pheromone algorithm for cloud scheduling
with various QOS requirements. Int. J. Comput.
Sci. (IJCSI), 9(3).

Goudarzi, H. and M. Pedram, 2011. Maximizing profit
in cloud computing system via resource allocation.
Proceeding of 31st International Conference on
Distributed Computing Systems Workshops
(ICDCSW, 2011), pp: 1-6.

Ho, S.Y., H.S. Lin, W.H. Liauh and S.J. Ho, 2008.
OPSO: Orthogonal particle swarm optimization
and its application to task assignment problems.
IEEE T. Syst. Man, Cy. A, 38(2): 288-298.

Jati, G.K., H.M. Manurung and S. Suyanto, 2012.
Discrete cuckoo search for traveling salesman
problem. Proceeding of 7th International
Conference on Computing and Convergence
Technology (ICCCT, 2012), pp: 993-997.

Kennedy, J. and R.C. Eberhart, 1995. Particle swarm
optimization. Proceeding of IEEE International
Conferences on Neural Networks, Perth, Australia,
4: 1942-1948.

Kennedy, J., R.C. Eberhart and Y.H. Shi, 2001. Swarm
Intelligence. Morgan Kaufmann, San Mateo, CA.

Layeb, A. and S.R. Boussalia, 2012. A novel quantum
inspired cuckoo search algorithm for bin packing
problem. Int. J. Inform. Technol. Comput. Sci.,
4(5): 58-67.

Noghrehabadi, A., M. Ghalambaz, M. Ghalambaz and
A. Vosough, 2011. A hybrid power series-cuckoo
search optimization algorithm to electrostatic
deflection of micro fixed-fixed actuators. Int.
J. Multidisciplinary Sci. Eng., 2(4): 22-26.

Res. J. Appl. Sci. Eng. Technol., 10(7): 758-769, 2015

769

Onat, Y.Y., C. Matthews, F. Roozbeh and S. Neville,
2010. Dynamic resource allocation in computing
clouds through distributed multiple criteria
decision analysis. Proceeding of IEEE 3rd
International Conference on Cloud Computing
(CLOUD), pp: 91-98.

Pawar, C.S. and R.B. Wagh, 2012. A review of
resource allocation policies in cloud computing.
J. Sci. Technol., 2(3): 165-167.

Rani, K.N., M.F. Malek and N.S. Chin, 2012. Nature-
inspired cuckoo search algorithm for side lobe
suppression in a symmetric linear antenna array.
Radioengineering, 21(3): 865-874.

Stillwell, M., D. Schanzenbach, F. Vivien and
H. Casanova, 2010. Resource allocation algorithms
for virtualized service hosting platforms. J. Parallel
Distr. Com., 70(9): 962-974.

Taşgetiren, M.F. and Y.C. Liang, 2003. A binary
particle swarm optimization algorithm for lot
sizing problem. J. Econ. Soc. Res., 5(2): 1-20.

Valian, E., S. Mohanna and S. Tavakoli, 2011a.
Improved cuckoo search algorithm for feed
forward neural network training. Int. J. Artif. Intell.
Appl., 2(3): 36-43.

Valian, E., S. Mohanna and S. Tavakoli, 2011b.
Improved cuckoo search algorithm global
optimization. Int. J. Commun. Inform. Technol.,
1(1): 31-44.

Warneke, D. and O. Kao, 2011. Exploiting dynamic
resource allocation for efficient parallel data
processing in the cloud. IEEE T. Parall. Distr.,
3(3): 1-3.

Xiao, Z., W. Song and Q. Chen, 2013. Dynamic
resource allocation using virtual machines for
cloud computing environment. IEEE T. Parall.
Distr., 24(6): 1107-1117.

Yang, X.S. and S. Deb, 2009. Cuckoo search via levy
flights. Proceeding of World Congress on Nature
and Biologically Inspired Computing. India, pp:
210-214.

Yang, X.S. and S. Deb, 2010. Engineering
Optimization by Cuckoo Search. Int. J. Math.
Model. Numer. Optim., 1(4): 330-343.

Yin, B., Y. Wang, L. Meng and X. Qiu, 2012. A multi-
dimensional resource allocation algorithm in cloud
computing. J. Inform. Comput. Sci., 9(11):
3021-3028.

Zhan, Z.H., J., Zhang, Y. Li and H.S. Chung, 2009.
Adaptive particle swarm optimization. IEEE
T. Syst. Man Cy. B, 39(6): 1362-1381.

Zhang, Q., L. Cheng and R. Boutaba, 2010. Cloud
computing: State-of-the-art and research
challenges. J. Int. Serv. Appl., 1(6): 7-18.

Zhang, Q., Q. Zhu and R. Boutaba, 2011. Dynamic
resource allocation for spot markets in cloud
computing environments. Proceeding of 4th IEEE
International Conference on Utility and Cloud
Computing (UCC, 2011), pp: 178-185.

