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Abstract: The main aim of this research is to design the hybrid evolutionary algorithm for minimizing multiple 
problems of dynamic resource allocation in cloud computing. The resource allocation is one of the big problems in 
the distributed systems when the client wants to decrease the cost for the resource allocation for their task. In order 
to assign the resource for the task, the client must consider the monetary cost and computational cost. Allocation of 
resources by considering those two costs is difficult. To solve this problem in this study, we make the main task of 
client into many subtasks and we allocate resources for each subtask instead of selecting the single resource for the 
main task. The allocation of resources for the each subtask is completed through our proposed hybrid optimization 
algorithm. Here, we hybrid the Binary Particle Swarm Optimization (BPSO) and Binary Cuckoo Search algorithm 
(BCSO) by considering monetary cost and computational cost which helps to minimize the cost of the client. 
Finally, the experimentation is carried out and our proposed hybrid algorithm is compared with BPSO and BCSO 
algorithms. Also we proved the efficiency of our proposed hybrid optimization algorithm. 
 
Keywords: Binary cuckoo search, binary particle swarm optimization, computational cost, levy flights, monetary 
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INTRODUCTION 
 

With the rapid development of processing and 
storage technologies and the success of the Internet, 
computing resources have become cheaper, more 
powerful and more ubiquitously available than ever 
before. This technological trend has enabled the 
realization of a new computing model called Cloud 
computing (Zhang et al., 2010). As a realization of 
utility computing, cloud computing aims to provide 
computing resources to customers like public utilities 
such as water and electricity. In a cloud computing 
environment, an Infrastructure-as-a-Service (IaaS) 
provider packages its physical resources (e.g., CPU, 
memory disk) into distinct types of Virtual Machines 
(VMs) in terms of their sizes and features and offers 
them as services to the general public (Zhang et al., 
2011). Also it delivers an infrastructure, platform and 
software (applications) as Services that are made 
available to consumers in a pay-as-you-go model. In 
industry these services are referred to as Infrastructure 
as a Service (IaaS), Platform as a Service (PaaS) and 
Software as a Service (SaaS) respectively. Many 
computing service providers including Google, 
Microsoft, Yahoo and IBM are rapidly deploying data 
centers in various locations around the world to deliver 
Cloud computing services (Beloglazov et al., 2012). At 
the same time computing and information processing 
requirements of various public organizations and 

private corporations have also been increasing rapidly. 
Examples include digital services and functions 
required by the various industrial sectors, ranging from 
manufacturing to housing, from transportation to 
banking (Goudarzi and Pedram, 2011).  

Particle Swarm Optimization (PSO) (Kennedy and 
Eberhart, 1995; Eberhart and Kennedy, 1995), is one of 
the most important swarm intelligence paradigms. The 
PSO uses a simple mechanism that mimics swarm 
behavior in birds flocking and fish schooling to guide 
the particles to search for globally optimal solutions. As 
PSO is easy to implement, it has rapidly progressed in 
recent years and with many successful applications seen 
in solving real-world optimization problems (Ho et al., 
2008; Zhan et al., 2009). PSO is distinctly different 
from other evolutionary-type methods in that it does not 
use the filtering operation (such as crossover and/or 
mutation) and the members of the entire population are 
maintained through the search procedure. In PSO 
algorithm, each member is called “particle” and each 
particle flies around in the multi-dimensional search 
space with a velocity, which is constantly updated by 
the particle’s own experience and the experience of the 
particle’s neighbors. The main idea behind the 
development    of    PSO    is   the    social    sharing   of  
information among individuals of population. In PSO 
algorithms, search is conducted by using a population 
of particles, corresponding to individuals as in the case 
of evolutionary algorithms. Each particle adjusts its 
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own position towards its previous experience and 
towards the best previous position obtained in the 
swarm. Memorizing its best own position establishes 
the particle’s experience implying a local search along 
with global search emerging from the neighboring 
experience or the experience of the whole swarm. 
According to the global neighborhood, each particle 
moves towards its best previous position and towards 
the best particle in the whole swarm, called G-best 
model. On the other hand, according to the local 
variant, called L-best model, each particle moves 
towards its best previous position and towards the best 
particle in its restricted neighborhood (Kennedy et al., 
2001; Taşgetiren and Liang, 2003). The Cuckoo Search 
(CS) (Yang and Deb, 2009, 2010), is a new meta-
heuristic algorithm imitating animal behavior. The 
optimal solutions obtained by the CS are far better than 
the best solutions obtained by efficient particle swarm 
optimizers and genetic algorithms (Yang and Deb, 
2009). The CS models such breeding behavior and, 
thus, can be applied to various optimization problems. 
Cuckoo Search Algorithm is based on the brood  
parasitism  of  some  cuckoo  species  (Brajevic et al., 
2012; Yang and Deb, 2009, 2010; Layeb and Boussalia, 
2012; Valian et al., 2011a), discovered that the 
performance of the CS can be improved by using Levy 
Flights instead of simple random walk. The CS was 
inspired by the obligate brood parasitism of some 
cuckoo species by laying their eggs in the nests of host 
birds. Some cuckoos have evolved in such a way that 
female parasitic cuckoos can imitate the colors and 
patterns of the eggs of a few chosen host species 
(Valian et al., 2011b). This reduces the probability of 
the eggs being abandoned and, therefore, increases their 
re-productivity. It is worth mentioning that several host 
birds engage direct conflict with intruding cuckoos (Jati 
et al., 2012; Valian et al., 2011a). In this case, if host 
birds discover the eggs are not their own, they will 
either throw them away or simply abandon their nests 
and build new ones, elsewhere (Dhivya et al., 2011; 
Babukartik and Dhavachelvan, 2012). For simplicity in 
describing the cuckoo search, consider the following 
three idealized rules: 

 
 Each cuckoo lays one egg at a time and dump its 

egg in randomly chosen nest. 
 The best nests with high quality of eggs will carry 

over to the next generations. 
 The number of available host nests is fixed and the 

egg laid by a cuckoo is discovered by the host bird 
(Rani et al., 2012; Noghrehabadi et al., 2011).  
 

The effective way of choosing an optimization 
algorithm can further improve the results, specifically 
for resource allocation.  

In this study, we develop hybrid optimization 
algorithm for dynamic resource allocation in cloud 
computing for minimizing the cost of the client. The 
main task of the client is divided into many subtasks 

and allocates the resource for each subtask instead of 
selecting the single resource for the whole entire task. 
The total cost of the client is calculated using the 
proposed fitness function taking the monetary cost and 
computational cost into account. Here, we hybrid two 
optimization algorithm such as Binary Cuckoo Search 
Optimization (BCSO) algorithm and Binary Particle 
Swarm Optimization (BPSO) algorithm to assign cloud 
resources to the tasks so as to minimize the cost of the 
client. 

In BCSO algorithm, initialization matrix is 
generated based on the number of resources and 
number of subtasks. Each cuckoo particle is evaluated 
in the initialization matrix through the objective 
function. The cuckoo particle is updated based on levy 
flights and the fitness function is evaluated. This 
process is repeated for a given number of iterations. 
The fitness value is compared with the previous fitness 
value in each iteration and the minimum fitness value is 
considered to be the best solution.  

In BPSO algorithm, the initialization matrix is 
generated as the number of resources and subtasks. A 
velocity matrix is generated randomly for the 
initialization matrix and the fitness function is 
evaluated. The G-best and P-best values are set with the 
initial P-best value and then the particle’s velocity and 
position are updated in the matrix. The iteration starts 
with the computation of fitness function using the 
updated matrix and arrived result is the current P-best 
value. If this P-best value, is lesser than the previous G-
best value, then G-best is updated with that new P-best 
value. This cycle is repeated for a given number of 
iterations. The final G-best value obtained after all 
iterations is the optimal solution. 

In the proposed algorithm, initially the BCSO 
algorithm is used which makes the initialization matrix 
based on the number of subtask at first subsequently it 
calculates the fitness value for each subtask of the 
initialization matrix and assigns fitness values to G-best 
of BPSO algorithm. Then, BPSO algorithm updates the 
initialization matrix through the levy flights and 
sigmoid function. The updation matrix of the BCSO 
algorithm is assigned to BPSO algorithm as 
initialization matrix. Now the BPSO algorithm starts its 
process by generating the velocity matrix randomly for 
the initialization matrix and consequently it calculates 
the fitness for each particle of the initialization matrix 
and also updates the values of G-best and P-best. After 
the updation of G-best and P-best, the BPSO algorithm 
updates its velocity matrix through the updated velocity 
and sigmoid function. The updated initialization matrix 
is assigned to BCSO algorithm. This cyclic process 
repeats up to K number of iterations in order to obtain 
an optimal resource allocation for the client’s task. The 
main objective of this research is to meet the multiple 
objectives through hybrid evolutionary algorithm for 
effective resource allocation scheme for cloud 
computing which is attained through proposed fitness 
function, which includes of monetary cost and 
computational cost as multiple objectives.  
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LITERATURE REVIEW 
 

Here, a review of some of the works are presented 
for resource allocation in cloud computing. Yin et al. 
(2012) have proposed a multi-dimensional resource 
allocation scheme for cloud computing that 
dynamically allocates the virtual resources for the cloud 
computing applications with reduced cost by using 
fewer nodes to process the applications. They adopted a 
two-stage algorithm using multi-constraint integer 
programming problem. Experimental results shows the 
improved resource utilization and reduced cost of data 
center. Warneke and Kao (2011) have discussed the 
opportunities and challenges for efficient parallel data 
processing in clouds and present their research project 
Nephele. Nephele was the first data processing 
framework to explicitly exploit the dynamic resource 
allocation offered by today’s IaaS clouds for both, task 
scheduling and execution. Particular tasks of a job 
could be assigned to different types of virtual machines 
which were automatically instantiated and terminated 
during the job execution. Based on these frameworks, 
they perform the extended evaluations of Map Reduce-
inspired processing jobs on an IaaS cloud system and 
compared the results to the popular data processing 
framework Hadoop. 

Stillwell et al. (2010) have proposed a formulation 
of the resource allocation problem in shared hosting 
platforms for static workloads with servers that provide 
multiple types of resources. Their formulation supports 
a mix of best effort and QoS scenarios and, via a 
precisely defined objective function, promotes 
performance, fairness and cluster utilization. Further, 
these formulations make it possible to compute a bound 
on the optimal resource allocation. They have several 
classes of resource allocation algorithms, which have 
been evaluated in simulation. They were able to 
identify an algorithm that achieved average 
performance close to the optimal across many 
experimental scenarios. 

Xiao et al. (2013) have presented a system that 
uses virtualization technology for allocating data center 
resources dynamically based on application demands 
and support green computing by optimizing the number 
of servers in use. They introduced the concept of 
“skewness” to be measured the unevenness in the multi-
dimensional resource utilization of a server. By 
minimizing skewness, they combined different types of 
workloads and improved the overall utilization of 
server resources. Finally, they developed a set of 
heuristics that prevent the overload in the system 
effectively while saving the energy used. Trace driven 
simulation and experiment results was demonstrated to 
show case the algorithm achieved a good performance. 

Onat et al. (2010) have investigated a dynamic 
autonomous resource management in cloud computing. 

The main contribution has two-fold. First, they adopt a 
distributed architecture where resource management 
has decomposed into independent tasks, each of which 
was performed by Autonomous Node Agents that were 
tightly coupled with the physical machines in a data 
center. Second, the Autonomous Node Agents carry out 
configurations in parallel through Multiple Criteria 
Decision Analysis. Simulation results showed that the 
promising effects in terms of scalability, feasibility and 
flexibility. 

Gogulan et al. (2012) have introduced a algorithm 
called Multiple Pheromone Algorithm (MPA) which 
has belongs to Ant Colony Optimization Algorithm. 
The objective of MPA algorithm was to dynamically 
generate an optimal schedule so as to be completed the 
task in minimum period of time as well as utilizing the 
resources in an efficient way. They have three different 
Quality of Service (QoS) make span, cost and reliability 
constraints were considered as performance measure for 
scheduling. Finally, the algorithm was compared with 
normal Ant Colony Algorithm (ACO) and Genetic 
Algorithm (GA). With the implementation of the 
Multiple Pheromone Algorithm (MPA), it reached an 
optimal solution as well as obtained the better QoS than 
ACO and GA. 

Pawar and Wagh (2012) have evaluated various 
policies for resource allocation in cloud computing 
based on Service-Level-Agreement (SLA), centralized 
decision and distributed multiple criteria decision. And 
also how different services i.e., Infrastructure as a 
Service (IaaS), Platform as a Service (PaaS) and 
Software as a Service (SaaS) contribute in resource 
allocation. Lastly they discussed the pros and cons of 
each policy. An et al. (2010) have proposed an 
alternative approach where providers and consumers 
automatically negotiate resource leasing contracts. 
Since resource demand and supply could been dynamic 
and uncertain, they distributed negotiation mechanism 
where agents negotiate over both a contract price and a 
de-commitment penalty, which allows agents to de-
commit from contracts at a lower cost. They compared 
their approach experimentally, for used representative 
scenarios and workloads, to both combinatorial 
auctions and the fixed-price model used by Amazon’s 
Elastic Compute Cloud and showed that the negotiation 
was achieved a higher social welfare. 

In cloud computing, the resource allocation for a 
task with the minimum cost is a challenging criterion. 
This problem is solved by computing the total cost 
using the monetary cost and the computational cost for 
the task. Evolutionary algorithms like Cuckoo Search 
and Particle Swarm Optimization can be utilized to 
achieve the minimum cost. Here we propose a hybrid 
optimization algorithm using BCSO and BPSO 
algorithms so as to achieve better results. 
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PROPOSED HYBRID OPTIMIZATION 

ALGORITHM 
 

In this study, we develop hybrid optimization 
algorithm for dynamic resource allocation in cloud 
computing. Here, we hybrid two optimization 
algorithms such as Binary Cuckoo Search Optimization 
(BCSO) algorithm and Binary Particle Swarm 
Optimization (BPSO) algorithm to schedule tasks to 
cloud resources, that takes into account both monetary 
cost and computational cost. Monetary Cost (MC) is the 
cost which is allotted by the service provider as the 
maintenance cost of the resources which includes 
electricity, building, cooling etc., to the client to utilize 
the resources to do the client’s task. This cost may 
differ from one service provider to another for the same 
task. Computational Cost (CC) is also assigned by the 
service provider based on the computational complexity 
of the task assigned by client to the resource. The 
computational cost also differs from one service 
provider to another since the computational  complexity 

includes the number of core required, required memory 
space, bandwidth etc. Cloud service providers invest 
70% of the cost for the maintenance of the data center 
where as only 30% of the cost is spent on actual IT 
resources. 

To reduce the overall cost of the resource 
allocation for the task of the clients, here we divide the 
main task into many subtasks instead of selecting the 
best resource among the available resources for the 
whole task. Also the proposed algorithm selects and 
allocates the best resources for each subtask from the 
available resources through the hybrid optimization 
algorithm which includes BPSO and BCSO algorithm. 
This hybrid optimization algorithm helps to reduce the 
monetary cost and computational cost of each subtask.  

The architecture of the proposed system is shown 
in Fig. 1. The client submits a task T and desires to 
complete the task with less cost and efficient 
computation through the cloud service providers. 
Consider  there  are  n  number  of  available  resources  
R = {R1, R2…Ri ... Rn} where 1in in the cloud to do

 

 
 
Fig. 1: Architecture of the proposed system 
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Table 1: Monetary cost of resources for each subtask 
 Resource 

--------------------------------------------------------------------------------------------------------------------------------------------------
Subtask R1 R2 Ri Rn-1 Rn

t1 MC1, 1 MC1, 2 MC1, i MC1, n-1 MC1, n

t2 MC2, 1 MC2, 2 MC2, i MC2, n-1 MC2, n

tj MCj, 1 MCj, 2 MCj, i MCj, n-1 MCj, n

tm-1 MCm-1, 1 MCm-1, 2 MCm-1, i MCm-1, n-1 MCm-1, n

tm MCm, 1 MCm, 2 MCm, i MCm, n-1 MCm, n

 
Table 2: Computational cost of resources for each subtask 
 Resource 

---------------------------------------------------------------------------------------------------------------------------------------------------
Subtask R1 R2 Ri Rn-1 Rn

t1 CC1, 1 CC1, 2 CC1, i CC1, n-1 CC1, n

t2 CC2, 1 CC2, 2 CC2, i CC2, n-1 CC2, n

tj CCj, 1 CCj, 2 CCj, i CCj, n-1 CCj, n

tm-1 CCm-1, 1 CCm-1, 2 CCm-1, i CCm-1, n-1 CCm-1, n

tm CCm, 1 CCm, 2 CCm, i CCm, n-1 CCm, n

 
the task T. To improve the efficiency and reduce the 
total cost of the task T, we divide the main task T into m 
number of subtasks T = {t1, t2 ..tj .. tm} where 1jm. To 
complete the task with efficient way along with less 
cost, we consider the two costs such as monetary cost 
and computational cost at the same time. To achieve 
this, we develop hybrid optimization algorithm for 
dynamic resource allocation in cloud.  

Resource allocation based on the input demand is a 
challenging issue in cloud, since both resource 
allocation and input demand must be satisfied for 
multiple constraints. So the allocation of resources for 
an input demand is increasing day-by-day in cloud 
computing resource management system. But the major 
problem is handling of real time constraints such as, 
monetary cost and computational cost. To handle all 
these criteria, we develop a resource allocation 
algorithm called hybrid optimization algorithm to do 
resource allocation dynamically in cloud computing. 
For example, let us consider that, the main task T is 
divided into 5 subtasks t1, t2, t3, t4, t5 and there are seven 
resources R1, R2, R3, R4, R5, R6, R7 available from the 
cloud. For each subtask our proposed algorithm helps to 
select the better resource based on the monetary cost 
and computational cost.  
 
Hybrid optimization algorithm: Normally client 
desires to access the resources with minimum cost, so 
that the client will be benefited. Here, we consider 
monetary cost and computational cost for computing 
the total cost of the resources. For that we hybrid the 
two algorithms such as BCSO and BPSO to achieve the 
minimum total cost.  

Each of the resources in the cloud assigns the 
Monetary Cost (MC) and Computational Cost (CC) for 
each subtask tj. Table 1 and 2 represent the monetary 
cost and computational cost of m number of subtask 
with respect to n number of resources.  

Figure 2 represents the work flow of the proposed 
hybrid optimization algorithm. This hybrid optimization 
algorithm  contains two optimization algorithms such as  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Work flow of the proposed hybrid optimization 

algorithm 
 
BCSO and BPSO. To begin with, the initialization 
matrix n×m is generated and assigned to the BCSO 
algorithm and then the fitness value is calculated to find 
the best resource for each subtask. The fitness value of 
the BCSO algorithm is assigned as initial G-best and P-
best values of the BPSO algorithm. Now initialization 
matrix of the BCSO algorithm is updated via levy 
flights. After that, the updated matrix of the BCSO 
algorithm is handed over to BPSO algorithm as 
initialization matrix. Now at this time, the BPSO 
algorithm initializes its process by generating the 
velocity matrix randomly for its initialization matrix as 
the size n×m. Subsequently BPSO find the best 
resource for each subtask through a fitness function. 
The arrived fitness value (P-best) is compared with the 
existing G-best value. If the fitness value is less than 
the G-best value, then G-best and P-best values are 
updated with the fitness value. Otherwise only P-best 
value is updated with the fitness value. The matrix n×m 
of  BPSO  is  updated  through  the  velocity calculation 

BCSO 

Initialization 
matrix n m

Fitness function 
calculation 

Fitness of each 
subtask 

Matrix updation 
based on levy 
flights n m

BPSO 

Velocity matrix n m

Fitness function 
calculation 

Update G-best 
and P-best

Matrix updation based 
on particle’s velocity 

Hybrid optimization algorithm 
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Table 3: Parameters used 
Symbol  Functionality of the symbol  
n Number of resources  
m Number of subtasks  
MC Monetary cost  
CC Computation cost 
K Iteration counter of BCSO 
 Iteration counter of BPSO 
K Maximum number of iterations 
F (tk

j) Fitness of jth subtask at kth iteration
CCji Communication cost of jth task with ith resource
MCji Monetary cost of jth task with ith resource 

 
and particle’s position updation. The cycle is completed 
after submitting the updated matrix of BPSO algorithm 
to BCSO algorithm as its initialization matrix. This 
process is repeated for K number of iterations. Finally, 
the best resource for each subtask is selected from the 
G-best value of BPSO which is given below. 
Parameters used are given in Table 3. 
 
Algorithm: 
 
Input: m number of subtasks, n number of resources, 
monetary cost, computational cost of n number of 
resources for m number of subtasks. 
Output: Minimum cost of resource allocation for each 
subtask. 
Begin 
  BCSO algorithm 
   Set k = 0 
    Generate initialization matrix n×m 
      For each particle  
         Get the value of MC and CC  
             Calculate fitness f (t kj) = MCj+CCji 
                 Call Particle updation of BCSO 
       End for       
 Assign the fitness of each particle as G-best of BPSO 
algorithm  
 
BPSO algorithm 
Get the updation matrix from BCSO algorithm as    
initialization matrix n×m 
    Set   = 0  
    Generate the velocity matrix of the initialization 
matrix n x m    
          For each particle  
             Get the value of MC and CC  
                Calculate fitness f (t kj) = MCji+CCji 
                   Update G-best and P-best  
                       Call Particle updation of BPSO 
         End for  
End 

Hybrid optimization algorithm: 
Subroutine: Particle updation of BCSO 
 Set k = k+1  
 Calculate   
 Calculate U and V  
 Calculate step  
  Calculate step size  
  Apply the step size value of particle to sigmoid 
function   
Generate rand (0, 1) 
    If sigmoid function>1 
           Particle become 1  
         Else  
          Particle become 0  
 
Subroutine: Particle updation of BPSO 
Set   = +2  
Calculate v 
Calculate updated velocity 
Apply updated velocity to sigmoid function  
Generate rand (0, 1) 
If sigmoid function>1 
          Particle become 1  
     Else  
        Particle become 0 
 
BCSO and BPSO procedures are explained briefly. 
 
Binary cuckoo search optimization: BCSO consists 
of four steps such as generation of initialization matrix, 
computing fitness function, particle updation and 
position updation which are explained in this section. 
 
Initialization matrix: Initially the value of iteration 
counter k is assigned as zero. After the every iteration 
the value of the iteration counter gets increase by one. 
Generate the initialization matrix n x m where n and m 
represent, the number of resources and number of 
subtasks. In the initialization matrix if the resource Ri is 
allocated to the subtask tj in kth, it is represented as ‘1’, 
otherwise ‘0’. An example initialization matrix is 
shown in Table 4. 

 
Fitness function: To evaluate fitness of each cuckoo 
particle from the initialization matrix, the fitness 
function is computed. The fitness function includes the 
monetary cost and computational cost of the resources 
(dimension) for each subtask (cuckoo particle). 
Equation (1) is used to calculate the fitness value based 
on the monetary cost and the computational cost: 

 
Table 4: Initialization matrix 
 Resource 

---------------------------------------------------------------------------------------------------------------------------------------------------
Subtask x/d R1 R2 Ri Rn-1 Rn

tk
1 xk

1d 1 0 0 0 0 
tk

2 xk
2d 0 0 0 0 1 

tk
j xk

jd 0 0 1 0 0 
tk

m-1 xk
m-1d 1 0 0 0 0 

tk
m xk

md 0 1 0 0 0 
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Table 5: Example initialization matrix 
 Resource 

-----------------------------------------------------------------------------------------------------------------------------------------------------------
Subtask x/d R1 R2 R3 R4 R5 R6 R7

t0
1 x0

1d 0 0 0 1 0 0 0 
t0

2 x0
2d 1 0 0 0 0 0 0 

t0
3 x0

3d 0 0 0 0 1 0 0 
t0

4 x0
4d 1 0 0 0 0 0 0 

t0
5 x0

5d 0 1 0 0 0 0 0 
 
Table 6: Example initialization matrix with corresponding fitness 
 Resource 

--------------------------------------------------------------------------------------------------------------------------------------------------------------
Subtask x/d R1 R2 R3 R4 R5 R6 R7 Fitness 
t0

1 x0
1d 0 0 0 1 0 0 0 1.486 

t0
2 x0

2d 1 0 0 0 0 0 0 0.542 
t0

3 x0
3d 0 0 0 0 1 0 0 1.286 

t0
4 x0

4d 1 0 0 0 0 0 0 1.651 
t0

5 x0
5d 0 1 0 0 0 0 0 1.812 

 
   jiji

k
j MCCCtf    

                           (1) 

 
In the Eq. (1), the value of f (tk

j) represents the total 
cost of jth subtask at the ith resource in the kth iteration. 

As an example, in the Table 5, the subtask t1 is 
assigned to the resource R4. Based on this data, we 
select the values MC14 and CC14 as the value of the 
monetary cost and the computational cost of the subtask 
t1 with respect to the resource R4 and the computed 
fitness values are shown in Table 6.  

The fitness of the each cuckoo particle is assigned 
as G-best to the BPSO algorithm for the further use. If 
the calculated fitness value of any particle is less than 
the existing fitness value, G-best value is updated with 
that of the calculated fitness value. 
 
Cuckoo particle updation: In nature, animals search 
for food in a random or quasi-random manner. 
Generally, the foraging path of an animal is effectively 
a random walk because the next move is based on both 
the current location/state and the transition probability 
to the next location. The chosen direction implicitly 
depends on a probability, which can be modeled 
mathematically. Various studies have shown that the 
flight behavior of many animals and insects 
demonstrates the typical characteristics of Levy flights 
(Dhivya et al., 2011). A Levy flight is a random walk in 
which the step-lengths are distributed according to a 
heavy-tailed probability distribution. After a large 
number of steps, the distance from the origin of the 
random walk tends to be a stable distribution. Each 
dimension of the every cuckoo particle is updated 
through levy flights. The Eq. (2) to (6) are used to 
update the every dimension of each particle of the 
initialization matrix. The values of , , rand are the 
random values between 0 and 1. The value of R (n) in 
the Eq. (3) represents the random value between 0 to n 
where n represents the total number of available 
resources to do the m number of subtasks: 
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
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


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
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
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


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                          (2)

 

 
  *nRU                                                           (3) 
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  steprandxsizestep k
jd *
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Here xk

jd is the jth particle position at the kth 
iteration in the dimension d, where d represents the 
resource number, U and V are normally distributed 
stochastic variables with standard deviation (). 
Equation (6) represents the calculation of step size 
value necessary to update the dimension.  

 
Position updation in BCSO algorithm: The 
dimension of the each cuckoo particle is updated based 
on step size value of that particle. The step size value of 
the each dimension of every cuckoo particle is applied 
into the sigmoid function, given in the Eq. (7) and the 
updated value becomes “0” or “1” through the 
condition which is represented in the Eq. (8): 
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Table 7: Fitness for each swarm particle in BPSO algorithm 

 
Resource 
--------------------------------------------------------------------------------------------------------------------------------------------------------------

Subtask x/d R1 R2 R3 R4 R5 R6 R7 Fitness 
t1

1 x1
1d 1 0 0 0 0 0 0 1.480 

t1
2 x1

2d 0 1 0 0 0 0 0 1.002 
t1

3 x1
3d 0 0 0 1 0 0 0 0.283 

t1
4 x1

4d 0 1 0 0 0 0 0 0.893 
t1

5 x1
5d 0 0 0 1 0 0 0 0.578 

 
Table 8: Values of G-best and p-best values for each iteration 

Particles  

Iteration counter  = 1 
----------------------------------------------------------------------------------- 

Iteration counter  = 2 
--------------------------------------------------

G-best P-best  G-best P-best 
x1 1.486 1.486 1.480 1.480
x2 0.542 0.542 0.542 1.002
x3 1.286 1.286 0.283 0.283
x4 1.651 1.651 0.893 0.893
x5 1.812 1.812 0.578 0.578

 
While updating the particle in each iteration, if the 

subtask is assigned to more than 1 resource at a time, 
the fitness value of each resource is calculated first and 
then the resource having a minimum fitness value is 
selected.  
 
Binary particle swarm optimization: There are four 
steps involved in BPSO. They are, generating 
initialization matrix, generating velocity matrix, 
computing fitness values, velocity updation and 
position updation which are explained in this section 
briefly. 
 
Initialization matrix: The updation matrix n x m of the 
BCSO algorithm is given to the BPSO algorithm as 
initialization matrix. The BPSO algorithm process the 
received updated matrix from the BCSO algorithm to 
find the global best value (G-best) and local best (P-
best).  
 
Velocity matrix: The updating process of the BPSO 
algorithm is based on the velocity matrix n x m which 
is generated randomly as the same size of the 
initialization matrix. The generation of velocity matrix 
is completed before the calculation of fitness function. 
The velocity of the particle is represented by jd in 
which j represents number of subtask, d represents 
dimension of the particle and  represents the iteration 
counter value. The value of the iteration counter  is 
initiated from 0 and is incremented by two (i.e., 0, 2, 4 
and 6, respectively) every time.  
 
Fitness function: The fitness function includes the 
monetary cost and computational cost of the resources 
for each subtask. The fitness function used in the BCSO 
algorithm is also used in BPSO algorithm as 
represented in the Eq. (1). Fitness values for the 
initialization matrix of the BPSO algorithm are given in 
Table 7. 

Table 8 represents the values of G-best and P-best 
for two iterations. In the first iteration, the value 

obtained from the output of the BCSO algorithm, is 
assigned as the G-best as well as P-best of BPSO i.e., 
both G-best and P-best values are same initially. Now 
the value of  is initialized to 0. The updation matrix of 
the BCSO algorithm is assigned as initialization matrix 
to the BPSO algorithm and the velocity matrix is 
generated randomly for the assigned initialization 
matrix. Subsequently the fitness value for each particle 
of the initialization matrix is calculated. If arrived 
fitness value is less than the existing fitness value, G-
best and P-best values are updated with the current 
fitness value. Otherwise only the value of P-best gets 
updated with the arrived fitness value.  

For example in Table 8, at the initial iteration the 
particle x1 has the fitness value 1.486 and the value of 
G-best and P-best both becomes the same (1.486). But 
in the second iteration, the particle x1 has the fitness 
value 1.480 which is less than previous iteration fitness 
value. Now G-best value becomes 1.480 and the P-best 
also becomes 1.480. Whereas in the initial iteration, the 
particle x2 has the fitness value 0.542 and the value of 
G-best and P-best both becomes same (0.542). But in 
the second iteration the particle x2 has the fitness value 
1.002 which is higher than previous fitness value 
(0.542). So G-best is not changed (remains as 0.542) 
but the P-best value is changed into 1.002.  

 
Velocity updation: After calculating the fitness of 
every particle of the matrix, the next step is to update 
particle position. Before that velocity of the particle 
should be updated. The Eq. (9) and (10) are used to 
update the (particle) velocity. w is used to control the 
impact of the previous velocities on the current 
velocity: 
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where,
௝ௗݒ∆ 

ఛ  : Change in the Velocity of jth particle at th 
iteration in dimension d 

c1, c2 :  Acceleration constants  
r1, r2 : Random numbers in the interval (0, 1) 
pbk

jd : P-best value of jth particle at kth iteration in 
dimension d 

xk
jd : Position of jth particle at kth iteration in the 

dimension d 
gbk

jd : G-best value of jth particle at kth iteration in 
dimension d 

௝ௗݒ
ఛ  : Updated Velocity of jth particle at  iteration in 

dimension d 
௝ௗݒ
ఛାଶ : Updated Velocity of jth particle at +2 iteration 

in dimension d 
w : Inertia weight 
 
Position updation in BPSO algorithm: With the help 
of updated velocity of each dimension of the particle, 
the BPSO algorithm updates the every dimension of the 
particle. The Eq. (11) and (12) are used to update the 
each dimension of the particle matrix. The updated 
matrix is given as the next input of BCSO algorithm: 

 

   2τ
jdv

2τ
jd

e1

1
vS


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                              (11) 

 

     
	xelse
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jdjd

0

11,0 2



 





(12)  
 

While updating the particle in each iteration, if the 
subtask is assigned to more than 1 resource at a time, 
the fitness value of each resource is calculated at first 
and then the resource having a minimum fitness value 
is selected. The proposed hybrid algorithm stops when 
a predefined number of iterations are completed. 

 

IMPLEMENTATION AND RESULTS 
 

The experimental results of the proposed technique 
for hybrid optimization algorithm for dynamic resource 
allocation are described in this section. In this study, we 
compare our proposed hybrid algorithm with BPSO 
algorithm and BCSO algorithm.  

The proposed hybrid optimization algorithm is 
implemented with Cloudsim version 2.1.1. The 
experimentation has been carried out using the 
synthetic dataset with i3 processor PC machine with 4 
GB main memory and 32 bit version of windows 7 
operating system. The two synthetic datasets are 
generated in times of interval based on the number of 
subtask and available resources. Also each of the 
synthetic dataset consists of monetary cost and 
computational cost of each task with respect to all 
resources. 

In this study, our main aim is to allocate the 
resource with minimum amount of monetary cost as 
well as computational cost. Here the total cost of the 
task is taken as the evaluation metrics. The total cost is 
calculated by the summation of fitness (G-best) value of 
every subtask. The evaluation is carried out with the 
total cost by varying the number resources and number 
of subtasks. Equation (13) is used to find the Total Cost 
(TC) of the task: 

 

  	tfTC
m

j
j




1                                          (13)

 

 
The performance evaluation of the proposed hybrid 

optimization algorithm is prepared by comparing with 
the binary cuckoo search algorithm and binary particle 
swarm optimization. 

 Figure 3a and b represents the performance of the 
25 number of resources and 20 numbers of subtasks

 
 

 
 
 
 
 
 
 
 
 
 
 
 
                                                         (a)                                                                                              (b) 
 
Fig. 3: Cost estimation for 25 resources and 20 subtasks, (a) dataset D1, (b) dataset D2 
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                                                      (a)                                                                                              (b) 
 
Fig. 4: Cost estimation for 25 resources (a) dataset D1, (b) dataset D2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                         (a)                                                                                            (b) 
 
Fig. 5: Cost estimation for 25 resources and 20 subtasks, (a) dataset D1, (b) dataset D2 
 
respectively. For the dataset D1, the proposed algorithm 
performed 14.87% less than BCSO and 24.14% less 
than BPSO. For the dataset D2, the proposed algorithm 
is 13.17% less than BCSO and 20.58% less than BPSO 
algorithm.  

From the available results, it is concluded that the 
total cost of the proposed algorithm is less than the cost 
of BCSO algorithm and BPSO algorithm. At each level, 
the value of total cost is high in the BPSO algorithm 
when compared with other two algorithms. In both 
datasets D1 and D2, for a given number of resources 
and subtasks, as the number of iterations increase, the 
cost of the task reduces slowly in the case of BPSO 
algorithm and BCSO algorithm. But in the case of the 
proposed algorithm the cost remains almost constant. 
The proposed algorithm gives the minimum cost for the 
task “T” with minimum number of iterations by 
selecting the resources which has the minimum cost 
from the available resources during the updation 
process of particle at the every iteration.  

Figure 4a and b represents the performance of the 
BCSO, BPSO and the proposed algorithm for 25 
resources, 35 iterations for the datasets D1 and D2 

respectively with varying subtasks. As the number of 
subtasks increases, the total cost of the task keeps 
increasing in all the three algorithms. At any level of 
subtasks, for a given number resources the cost 
achieved by the proposed method is less than the cost 
achieved by BCSO and BPSO. For the dataset D1, the 
proposed algorithm obtains the cost 10.80% less than 
BCSO algorithm as well as 21.10% less than BPSO 
algorithm, similarly for the dataset D2, the proposed 
algorithm is 10.51% less than BCSO and 19.76% less 
than BPSO algorithm.  

Figure 5a and b represents the performance of the 
BPSO, BSCO and BPSO-BCSO algorithms for the 
datasets D1 and D2 with 25 numbers of resources and 
20 number of subtasks respectively. In BPSO-BCSO 
algorithm, the output of BPSO is given as the input to 
BCSO to find the total cost which is a reverse 
procedure of the proposed hybrid algorithm.  

Results obtained shows that, even if the hybrid 
combination is reversed the outcome is almost same as 
the proposed algorithm, since the G-best value is 
updated in each iteration. 
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Table 9: Average performance of the three algorithms 

Number of 
resources 

D1 dataset 
-------------------------------------------------------------------------------- 

D2 dataset 
--------------------------------------------------------------------

BCSO BPSO Proposed BCSO BPSO Proposed
25 23.84 26.96 21.27 24.48 27.31 21.91 
50 22.99 26.84 20.46 23.73 26.92 21.15 
100 22.64 26.54 19.84 23.44 26.83 20.05 

 
Table 9 represents the average performance of the 

proposed hybrid algorithm, BCSO and BPSO 
algorithms for the numbers of resources, n = 25, 50 and 
100 and 35 number of iterations. 

From the Table 9, it is predicted that, if the number 
of resources are increased, the total cost reduces. The 
proposed algorithm also demonstrates the robustness of 
the results obtained. 

 
CONCLUSION 

 
We proposed a hybrid optimization algorithm for 

dynamic resource allocation in cloud computing. 
Initially, the BCSO algorithm generates the 
initialization matrix as per the number of subtasks and 
resources. Subsequently it calculates the fitness value 
for each particle of the initialization matrix based on the 
monetary cost and computational cost. The fitness of 
the particle is assigned to BPSO algorithm as G-best 
and P-best, then the initialization matrix of the BCSO 
algorithm gets updated through the levy flights and 
sigmoid function and then updated matrix is assigned to 
BPSO algorithm as initialization matrix. The BPSO 
algorithm generates the velocity matrix randomly for 
the initialization matrix and then calculates the fitness 
value. Based on the arrived fitness value, the values of 
G-best and P-best are updated. The BPSO algorithm 
updates the matrix through the updated velocity and 
sigmoid function. The updated matrix is assigned then 
to BCSO algorithm. This cyclic process is repeated up 
to k number of iterations. The experimentation is 
carried out and the results of the proposed hybrid 
algorithm are compared with that of the BCSO and 
BPSO algorithm. The proposed hybrid algorithm gives 
better cost optimized results compared to BCSO and 
BPSO algorithms. The hybrid combination of other 
evolutionary algorithms can be carried out for further 
scope. 
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