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Research Article 

Evaluation of Arm Processor-based Bionic Intelligent Controller for a  
Buck-boost Converter 

 

M.V. Mini and L. Padma Suresh 
Electrical and Electronics Engineering, Noorul Islam Centre for Higher Education,  

Kumaracoil, Tamil Nadu, India 
 

Abstract: This study focuses on performance-comparison of different tuning methods for a PI controller applied to 
a buck-boost converter. Comparison between the controllers is made by analysis of design methodology 
implementation issues and empirically measured performance. Design of PI controller is based on frequency 
response of the converter. The optimization of PI controller is based on ant colony algorithm. Experimental results 
show that, tuning the PI controller using ACO algorithm gave better performance than the conventional algorithm. 
This is mainly due to the fact ACO is capable of reducing the overshoot without oscillation. 
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INTRODUCTION 

 
DC-DC converters are been widely used in 

computer hardware and many industrial applications. 
They are also the dc-dc converters are of two types a 
buck converter, which decreases the voltage level from 
an input dc source and a boost converter which 
increases the voltage level from an input dc source. 
Erickson (1991) has given that a buck-boost converter 
is a combination of buck and boost converter which can 
decrease or increase the voltage level from an input dc 
source. The buck-boost converter has a Right Half-
Plane (RHP) zero and hence is also called Non 
Minimum Phase (NMP) system. Deriving a control 
system for a non-minimum phase system is more 
difficult than that for a minimum phase system as 
discussed in Siotine and Li (1991) and Arulselvi et al. 
(2004). It is necessary, that designing a controller for a 
non-minimum phase system requires avoiding the 
cancellation of unstable pole/zero to guarantee the 
internal stability of the closed-loop system. 
Conventionally, PI (or PID) control logic is proposed 
for the buck-boost converter using root-locus or pole-
placement methods as discussed by  Alvarez-Ramirez  
et al. (2001), Guo et al. (2002) and Tsang et al. (2008). 
These controllers are popular due to their simple 
structure, and they can usually provide a good closed 
loop response characteristic. However, these methods 
fail to determine suitable PI (or PID) control gains 
when the system parameters are uncertain. 

Proportional-Integral-Derivative (PID) controllers 
are frequently used in the control process to regulate the 
time domain behavior of different types of dynamic 

plants. Despite its simple structure, it seems so hard to 
find a proper PID controller as discussed by Oonsivilai 
and Pao-La-Or (2008). Various methods have been 
proposed to enable us to tune these parameters that will 
handle this issue. 

Ziegler-Nichols tuning method is the most standard 
one used.  However it is often difficult to find optimal 
PID parameters with these methods. Therefore, many 
optimization techniques like fuzzy logic (Tzafestas and 
Papanikolopoulos, 1990; Visioli, 2001), neural network 
as discussed by Cao et al. (2007), neural-fuzzy logic as 
discussed by Seng et al. (1999), immune algorithm as 
discussed by Kim (2001), simulated annealing as 
discussed by Zhou and Birdwell (1994), and pattern 
recognition  are developed to tune the PID controllers. 
Several optimum tuning PID techniques based on many 
random search techniques such as Genetic Algorithm 
(GA) as discussed by Wang and Kwok (1994) and 
Mitsukura et al. (1999), Particle Swarm Optimization 
(PSO) as discussed by Selvan et al. (2003) and Ant 
Colony Optimization (ACO) are also used as given in 
Hsiao et al. (2004). 

Researchers have acknowledged the capacity of 
ACO to search for and locate an optimum solution. This 
method is mainly inspired by the fact that ants can find 
the shortest route between their nest and a food source.  
Ant Colony Optimization as discussed by Dorigo et al. 
(1999) and Dorigo and Caro (1999) is yet another 
metaheuristic approach for solving combinatorial 
optimization problems. A few illustrations of such 
problems can be found with the Travelling Salesman 
Problem (TSP) as discussed by Reinelt (1994), 
quadratic assignment problem as discussed by Stützle 
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and Dorigo (1999), graph coloring problems as 
discussed by Costa and Hertz (1997), hydroelectric 
generation scheduling problems as discussed by Huang 
(2001), vehicle routing in Gambardella et al. (1999).  

PI and PID controller have been widely used in 
DC-DC converters, mainly due to their simplicity. This 
paper focuses on optimizing a PI controller for Buck-
Boost Converter using Ant Colony Algorithm (ACA). 

 
MATERIALS AND METHODS 

 
Buck boost converter: A Buck-Boost converter is a 
step-down and step-up DC-DC converter. The output of 
Buck-Boost converter’s output is regulated based on the 
duty cycle of the Pulse Width Modulation (PWM) input 
at fixed frequency. Whenever the duty cycle (dc) is less 
than 0.5, the output voltage of the converter will be 
lower than the input voltage. However, when the duty 
cycle is above 0.5 the output voltage of the converter is 
higher than the input voltage. A Buck-Boost converter’s 
basic power stage is shown in Fig. 1. Figure 1 VI is 
input voltage source, VO is the output voltage, Sw is 
switching component, C is the capacitance, L is 
inductance, D is diode and R is the load resistance. 

The converter contains two independence ac 

inputs, the control �� (s) and line ��I (s) and one output, 
��o (s). 

The converter contains two independence ac 

inputs, the control �� (s) and line ��I (s) and one output, 
��o (s). The control-to-output transfer function (Gvd) is 
derived from small signal model of the converter as: 
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Plug in numerical values illustrated in Table 1 is 

substitute in (1): 
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CONTROLLER DESIGN FOR BUCK-BOOST 

CONVERTER 
 

PI controller: In a controller it is necessary to compare 
the output voltage to a reference value Vref (sometimes 
called   a  demand  voltage)  and  then  take  appropriate  

 
 

Fig. 1: Buck-boost converter 

 
Table 1: Parameters of buck boost converter 
Symbol Parameter Values 

L Inductance 220 µH 

C Capacitance 220 µF 
R Load resistance 20 Ω 

V1 Input voltage 12 V 
Vo Output voltage -24 V 

 
remedial action to ensure that Vout = Vref. Usually, 
this is achieved by generating an error signal e = Vref-
Vout which is minimized by the controller (sometimes 
referred to as a compensator) which then manipulates in 
such a manner so as to adjust Vout by varying the duty 
cycle (dc). 

Referring to Fig. 2, the output voltage is compared 

to a reference producing an error signal, (e). The error 

signal is individually applied to each term of the 

compensator after which they are combined forming the 

duty cycle input command to the buck-boost converter. 

The proportional gain Kp acts as a feed-forward term 

allowing any changes in the error to be passed to the 

compensator output without delay. Kp must be carefully 

chosen because large values tend to induce instabilities 

in the system response. The integral term Ki is used to 

reduce the steady-state error at the expense of reducing 

the dynamic response. 
The performance of each prototype controller is 

evaluated using the ISE (Integral Square Error), IAE 
(Integral Absolute Error) and ITAE (Integral Time 
Absolute Error) performance indexes. The ISE index 
evaluates a controller’s performance by assigning it a 
score based on the error response of the system. 
Essentially, good performing controllers will have 
lower ISE scores than poor performing counterparts. To 
ensure that the phenomenon does not affect the 
controller’s score, the absolute error is squared (which 
should be a small value in the vicinity of the transient 
event) which will also reduce its impact. 

 

 
 

Fig. 2: Block diagram of PI control system    
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Design of PI controller: The PI controller designed 
for a buck-boost converter is given in equation. The  
controllers can be introduced in either feed-back or 
feed-forward path which will control the steady state 
error and transient performance. In most of the practical 
control systems, the input to the controlling device is 
error. 

In case of PI controller, the input to the controlling 
device is proportional as well as integral of the error 
function. The order of the system is increased when the 
system is combined with the controller. The effect of 
compensation on the system dynamics cannot be 
visualized easily. The higher the order of the system the 
more it becomes unstable. 

Integral action remains active as long as the error is 
present. Thus, it makes a steady state error zero so the 
PI controller is designed based on the frequency domain 
specification. 
The controller transfer function is given in Eq. (3): 
 

s

K
KsG I

pc +=)(                              (3) 

 
The phase margin ϕm 

at � is determined from the 
settling time. Phase and Magnitude response equation is 
given in (4) and (5):  
 

+mφ 180)()()( ∠=∠ ωωω jGjHjG c
                    (4) 

 
ϕm is desired phase margin at ω:  
 

1)()()( =ωωω jGjHjG c
               (5) 

 
Solving these two Eq. (4) and (5) we get the KI and 

KP value: 
 

s
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Ant Colony Optimization (ACO): Ant colony 

optimization algorithms are especially suited for finding 

solutions to difficult optimization problems. A colony 

of artificial ants helps to find good solutions, by using 

the emergent property of the ants’ cooperative 

interaction. Ant colony algorithms are adaptive and 

robust in nature due to their similarities with ant. This 

property can be applied to different optimization 

problems as well as different versions of the same 

problem. 
The main traits of artificial ants are derived from 

their natural model. Such borrowed traits include: 
 

• Cooperative existence in colonies with other ants 

• Indirect information transmission by depositing 
pheromone (stigmergic communication) 

• Repetitive local moves in a sequence to find the 
shortest path to a destination point 

• Applying a stochastic decision policy using local 

information alone to find the best solution. In order 
to a particular optimization problem, artificial ants 
are enriched with additional capabilities which are 
not present in real ants 

 
For a given optimization problem, the best solution 

is searched by finite sized ant colony. Each ant can find 
a solution or at least part of the solution to the 
optimization problem on its own, but the optimal 
solution can be achieved only when many ants work 
together. Since the optimal solution can only be 
achieved through global cooperation of all the ants in a 
colony, it is a promising result of such cooperation. The 
ants do not communicate directly while searching for a 
solution, but they communicate indirectly by adding 
pheromone to the environment. The ant finds the 
shortest path for a particular problem from a given 
starting state by moving through a sequence of 
neighboring states. It moves based on a non-
deterministic local search policy influenced by its own 
internal state (private information), the pheromone 
trails and local information encoded in the environment 
(together public information). Ants use this private and 
public information to decide when and where to deposit 
pheromones. The amount of pheromone deposited by 
an ant is proportional to the quality of the movement 
made by an ant. It concludes more the pheromone, the 
better the solution, obtained. Once an ant has found a 
solution; it dies, that is, it is deleted from the system. 

The series controllers are very frequent because of 

higher order systems. For a continuous system, the 

transfer function of a PI controller defined in Eq. (3). 

The design implies the determination of the values of 

the constants Kp and KI, meeting the required 

performance specifications. 
The textbook version of the PI controller in 

continuous time is:  
 

∫ +=+=
t

ipIp tutudeKKtu
0
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where, e (t) = r (t) - y (t) is the difference between the 

reference signal r (t) and the output, y (t) of the 

controlled process. 

The PI controller is implemented to improve the 

dynamic response in addition to reducing or eliminating 

the steady state error. To characterize the performance 

of the PI controller systems, performance of the 

transient response such as rise time (tr), the Integral 

Square Error (ISE), Overshoot (Os), settling time (ts), 

Integral Absolute Error (IAE), Integral Time Absolute 

Error (ITAE), Integral Time Square Error (ITSE) are 

computed. Tuning the parameters of the PI controllers 

using the multi objective ant colony optimization is 

indicated in Fig. 3. 

As shown in Fig. 4, the gains Kp and KI of the PI 

controller are generated by the multi objective ACO 

algorithm for the buck boost converter. The present
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Fig. 3: PI control system 

 

 
 
Fig. 4: Ant colony optimization graph 

 
optimization problem is represented directly in the form 
of a construction graph, for better exploitation of the 
ACO algorithm.  

The population is represented by a 100*2 matrix, 
where the ant selects the optimum parameters Kp and KI 
of the PI control system by minimizing an objective 
function L

A
. The graph (Fig. 4) illustrates the design of 

PI problem using ant colony algorithm. In this study, 
each parameter of Kp and KI is coded by 100 numbers 
(nodes), respectively. Therefore, only one node 
represents the optimum solution values of the 
parameters Kp and KI. 

The basic step in applying optimization method is 
to choose the optimization criteria that are used to 
evaluate fitness. Since the PI controller has many 
performance indexes of the transient response, then 
they can be combined into one objective function 
composed of the weighted sum of objectives. 
The objective function must be set: 
 

)min( FLA φ=                               (8) 

 
where, F = [f1 f2 f3 f4 f5 f6 f7]

T
: vector of objective 

functions, f1: setting Time (Ts), f2: Overshoot (OS), f3: 
rise Time (Tr), f4: Integral Absolute Error (IAE), f5: 
Integral Square Error (ISE), f6: Integral Time Absolute 
Error (ITAE), Φ = [λ1 λ2 λ3 λ4 λ5 λ6 λ7]: vector of 
nonnegative weights and f7: Integral Time Square Error 
(ITSE).  

The purpose of multi-objective optimization 
problem is to strike a balance between numerous 
conflicting objectives. Considering all objectives in 
these problems, we may find more than one solution 
that optimizes all the objectives and there is no apparent 
superiority of any of these solutions over others. We 
can never have a single-best solution which would be 

better than the remainder. Therefore, a set of solutions 
which are better than remainder solutions called the 
Pareto front is faced. Among the feasible solutions, 
solutions belonging to the Pareto front are called as 
non-dominated solutions, while the remaining solutions 
are called as dominated. As none of the Pareto set 
solutions were found to be better than the any of the 
non-dominated solutions, all of them are equally 
acceptable as long as the objectives are met. 

ACO uses a pheromone matrix τ = {τij} for the 
construction of potential good solutions. The initial 
values of τ are set τij = τ0 for all (i, j), where τ0>0. 

The probability ���
	 (t) of choosing a node j at node 

i is defined in (9). At each evolution of the algorithm, 
the ant constructs a complete solution using (9), starting 
at source node: 
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where, ηij representing heuristic functions, constant α-
determine the relative influence of pheromone values 

where constant-β determine the relative influence of the 

heuristic values and at a given time, T
A
: is the path 

effectuated by the ant A.  

The pheromone evaporation is a way to elude 

unlimited increase of pheromone trails and it allows the 
forgetfulness of the poor decisions: 
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Where the quantity of pheromone on each path, 

NA represents number of ants, ρ indicates the 

evaporation rate. Evaporation rate lies between zero and 

one (0<ρ≤1). 

The following general algorithm can describe the 
proposed algorithm. 

 

Begin: 
Step 1: Initialize randomly potential solutions of the 

parameters (Ki, Kp) by using uniform 

distribution.  
Initialize the heuristic value and the 

pheromone trail. 

Initialize the Pareto set to an empty set. 
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Step 2:  Place the A
th

 ant on the node. 
 

Compute the heuristic value associated in the multi 
objective L

A
. 

Choose the successive node with probability: 
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where, ηij = 1/Kj, j = [P, I]: representing heuristic 
functions, at a given time T

A
: represents the path 

effectuated by the ant A. The quantity of pheromone on 
each path may be defined as: 
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where, L

A
 is the value of the objective function found 

by the ant A. Till the current iteration, L min is the best 
optimal solution brought out by the set of the ants. 
 
Step 3: Use pheromone evaporation given by (10) to 

avoid an infinite progression of pheromone 
trails and allow the forgetfulness of bad 
choices: 
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where,  
NA : Number of ants  

ρ : The evaporation rate 0<ρ≤1 

 

Step 4: Evaluate the obtained solutions according to 

the different objectives. 

Update the Pareto archive with the non-

dominated ones. 
 

 

Reduce the size of the archive if necessary. 

Step 5: Display the optimum values of the 

optimization parameters. 

Step 6: Globally update the pheromone, according to 

the optimum solutions calculated at Step 5. 

Iterate from Step 2 until we reach the 

maximum number of iterations.  

End 

 

RESULTS AND DISCUSSION 

 

Simulation and experimental results: In this section, 

the numerical results obtained using the proposed 

algorithm is presented and discussed. The various of  

the parameters in ACO are, m = 100 (numbers of ants), 

α = 0.5, β = 0.5, ρ = 0.5 and maximum generation = 50. 

The objective function is given in Eq. (8): 

 

)min( 6655443322 fffffLA λλλλλ ++++=   (14) 

 

The objective function here is f2: the overshoot to 

measure the performance of the closed-loop system, f4: 

Integral Time Absolute Error and f5: the integral square 

error f6: Integral Absolute error that should be 

minimized. Therefore the vector of weights is Φ = (0 1 

0 1 1 1 0). The closed loop PI controller cascaded with 

the converter was tuned for the values KP and Ki first 

by using multi objective ant colony algorithm. Hence, 

the percent maximum overshoots, the settling time, the 

rise time and the integral of the squared error were 

computed. 

The graphs of the obtained three-dimensional 

Pareto optimal fronts for the generated problem 

corresponding to the buck-boost converter shown in 

Fig. 5. 

Figure 6 Report the evaluation of the objective 

function of the converter. It is observed that the 

objective function value decreases substantially. 

 
 

Fig. 5: Multi-objective optimization of Pareto set of the converter 
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Fig. 6: Evaluation of the objective function 

 

Initially, each parameter (Kp, K

randomly and uniformly with  an  average 

Fig. 7: Prototype of buck-boost converter 

 

 

Fig. 8: Duty cycle of PWM 
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, Ki) is distributed 

average  value.  After 

several iterations, the multi objective ant colony 

algorithm generated the best solutions of the PI 

parameters (K
best

p, K
best

i). 

After that, each parameter (K

distributed randomly and uniformly with an average 

value which is equal to the value founded in the last 

generation. Finally, the multi objective ant colony 

algorithm generated the optimal solutions (

The prototype of Buck-Boost converter tested in 

the laboratory is shown in Fig. 7. 

Figure 8 shows the experimental result of duty 

cycle varying the line voltage of the converter. Varying 

line voltage and load it will adjust the duty cycle and 

make the voltage as stable. 

Figure 9 shows the transient response of the buck

boost converter during the staring up. During the 

starting up converter settling time is 2.8

have steady state error. 

 

 
 

 

1000 1200 1400

 

ISE

IAE

ITAE

several iterations, the multi objective ant colony 

algorithm generated the best solutions of the PI 

After that, each parameter (K
best

p, K
best

i) is 

distributed randomly and uniformly with an average 

which is equal to the value founded in the last 

generation. Finally, the multi objective ant colony 

algorithm generated the optimal solutions (K
opt

p,  K
opt

i). 

Boost converter tested in 

shows the experimental result of duty 

cycle varying the line voltage of the converter. Varying 

line voltage and load it will adjust the duty cycle and 

Figure 9 shows the transient response of the buck-

staring up. During the 

starting up converter settling time is 2.8 µsec and it 
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Fig. 9: The output voltage transient response of

during starting-up (5 V/div and 1 µsec/div)

 

 

Fig. 10: The output voltage transient response of the 

converter during starting-up (5 V/div and 1

 

Figure 10 shows the transient response of the buck

boost converter during the staring up. During the 

starting up converter settling time is 1.6

have very less amount of steady state error.

 

CONCLUSION 

 

Conventional PI controller and optimized PI 

controllers were designed and implemented for a Buck

Boost converter. The linear PI controller was designed 

for the converter using frequency response techniques. 

The conventional PI controller was applied during 

steady-state to achieve stable steady

Optimized PI controller was designed based on ACO. 

The performance of the controllers was compared based 

on the experimental results. Experimental results show 

that fast transient response and stable steady

response could be achieved for the buck

converters using optimized PI converter.
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