
Research Journal of Applied Sciences, Engineering and Technology 10(7): 736-741, 2015

DOI:10.19026/rjaset.10.2425

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: July 7, 2013 Accepted: August 21, 2013 Published: July 10, 2015

Corresponding Author: Mohammed A. Otair, Faculty of Computer Sciences and Informatics, Amman Arab University,

Amman-Jordan
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

736

Research Article
Does an Arithmetic Coding Followed by Run-length Coding Enhance the

Compression Ratio?

1
Mohammed A. Otair and

2
Ahmad M. Odat

1
Faculty of Computer Sciences and Informatics, Amman Arab University, Amman-Jordan
2
Faculty of Science and Information Technology, Irbid National University, Irbid-Jordan

Abstract: Compression is a technique to minimize the quantity of image without excessively decreasing the quality
of the image. Then, the translating of compressed image is much more efficient and rapidly than original image.
Arithmetic and Huffman coding are mostly used techniques in the entropy coding. This study tries to prove that
RLC may be added after Arithmetic coding as an extra processing step which may therefore be coded efficiently
without any further degradation of the image quality. So, the main purpose of this study is to answer the following
question "Which entropy coding, arithmetic with RLC or Huffman with RLC, is more suitable from the compression
ratio perspective?" Finally, experimental results show that an Arithmetic followed by RLC coding yields better
compression performance than Huffman with RLC coding.

Keywords: Arithmetic coding, arithmetic vs. Huffman, entropy coding, image compression, run-length coding

INTRODUCTION

The compression is a process for converting the

original information into a compressed form without
data loosing (Pu, 2006). In other words, compression
data means reducing the data file size with preserving
the content of the original file, actually this is the main
valuable advantage when handling with a huge file size
(Kodituwakku and Amarasinghe, 2007). The Data
compression concept is mostly compatible with data
management in terms of its ability to provide storage
space and bandwidth for data transmission (Goetz and
Leonard, 1991). Its technique involves encoding
information by using a smaller number of bits instead
of its corresponding original file. There are two
classifications of data compression algorithm: lossless
or Lossy. The latter classification usually used
statistical redundancy to represent data in brief without
losing information by eliminating unnecessary
redundancy. Lossless compression algorithm is
applicable because most data has statistical redundancy.
It helps in optimal using of resources like transmission
bandwidth and storage space. The life cycle for
compression algorithms are consists of two phases:
compressed and decompressed. Decompressed is an
extra process will cost more computational processing
(Ahmed et al., 2013).

Missing or losing data and information are
acceptable in lossy data compression algorithm. High
quality files and storage space are direct proportion,
some application does not care about the quality,

instead of that they are looking for reducing the size of
files for various purposes, some details can be
discarded to save storage space such as multimedia
applications. Many features presented by lossless data
compression algorithm for space science applications,
such as increase the scientific revenue, and reduce the
requirement for the data archive volume. Other
meaning, lossless data compression algorithm guarantee
to reconstruct and rebuild the original data file without
losing or missing any bit. Lossless data compression
algorithm preserves the original data file in accurate
and complete form, this process done by removing
unnecessary redundant data from the source file.
Decompression process suppose to retrieve all the
deleting redundancy data to rebuild/reconstruct again
the original source data, decompression process files
requires to obtain the same file as it was before
compression, as a result of decompression is to get a
replica file for original one (Ahmed et al., 2013).

As one of the able-bodied accepted methods of
lossless compression is Huffman coding (Huffman,
1952). In this technique, it is supposed that intensity
each pixel is associated with a certain probability of
appearance and this probability is spatially fixed.
Huffman coding specifies a binary code to each
intensity value, with beneath codes going to intensities
with higher probability (Singh, 2010). If the
probabilities can be evaluated a priori, then the table of
Huffman codes can be fixed at both the encoder and the
decoder. However, in most cases the coding table must
be sent to the decoder along with the compressed image

Res. J. Appl. Sci. Eng. Technol.,

data. Other examples of the lossless compression
techniques cover Run Length Coding (RLC) (Goloumb,
1966), arithmetic coding (Witten et al
et al., 2013) and bit plane coding. These compression
techniques also have bounded compression ratios. So,
they are used only in susceptible applications (such as
medical application) where data loss is rejected, or used
in conjunction with other techniques.

The proposed technique in this paper is based on

two existing algorithms: Arithmetic Coding (AC)

Algorithm and Run-Length Coding (RLC). AC

algorithm calculates the probability collective function,

and then calculates the function of the accumulative

distribution for the original sequence. It can be

classified as a lossless compression algorithm. The

sequence of symbols is set a single arithmetic codeword

which synchronize into [0, 1] subinterval. The amount

of symbols in the bulletin increases, the breach

acclimated to represent it becomes smaller. The second

algorithm is Run-Length coding (RLC), which also can

be classified as a lossless data compression algorithm.

It is used to minimize the number of repeating

characters into input-string, encodes a run of symbols

into two bytes (symbol, count).

So, this study will Combining this two method of

coding in this way, the image (data) will encoded based

on normal Arithmetic coding, additional compression

can be achieved using Run-Length coding.

LITERATURE REVIEW

Image Compression is a vital component

available solutions to create image file sizes to be

manageable and transmittable. Important criteria such

as portability and performance are used in the chosen of

the compression and decompression methods.

compression algorithms can be divided into two groups:

Entropy coding (lossless encoding):

algorithms remove only redundancy existing in the

data. The rebuilt image is identical to the original, i.e.,

all of the information present in the input image has

been preserved by compression. Entropy Encoding can

be divided into:

• Content Dependent Coding such as Run

Coding and Diatomic Coding

• Statistical Encoding such as Huffman Coding and

Arithmetic Coding

Source coding (lossy encoding): Higher compression

is possible using lossy algorithms which create

redundancy (by discarding some information) and then

remove it.

Hybrid coding (combine entropy coding with source

coding): Examples: MPEG, JPEG, etc.

Res. J. Appl. Sci. Eng. Technol., 10(7): 736-741, 2015

737

data. Other examples of the lossless compression
techniques cover Run Length Coding (RLC) (Goloumb,

et al., 1987; Ahmed
., 2013) and bit plane coding. These compression

lso have bounded compression ratios. So,
they are used only in susceptible applications (such as
medical application) where data loss is rejected, or used

The proposed technique in this paper is based on

lgorithms: Arithmetic Coding (AC)

Length Coding (RLC). AC

algorithm calculates the probability collective function,

and then calculates the function of the accumulative

distribution for the original sequence. It can be

sless compression algorithm. The

sequence of symbols is set a single arithmetic codeword

into [0, 1] subinterval. The amount

of symbols in the bulletin increases, the breach

acclimated to represent it becomes smaller. The second

Length coding (RLC), which also can

be classified as a lossless data compression algorithm.

It is used to minimize the number of repeating

string, encodes a run of symbols

So, this study will Combining this two method of

coding in this way, the image (data) will encoded based

on normal Arithmetic coding, additional compression

Length coding.

REVIEW

Image Compression is a vital component of the

available solutions to create image file sizes to be

manageable and transmittable. Important criteria such

as portability and performance are used in the chosen of

the compression and decompression methods. Data

d into two groups:

(lossless encoding): Lossless

algorithms remove only redundancy existing in the

data. The rebuilt image is identical to the original, i.e.,

all of the information present in the input image has

on. Entropy Encoding can

Content Dependent Coding such as Run-length

Statistical Encoding such as Huffman Coding and

Higher compression

is possible using lossy algorithms which create

redundancy (by discarding some information) and then

entropy coding with source

Fig. 1: Arithmetic coding algorithm flow chart

This study focused only on two of the lossless

compression techniques: Arithmetic Coding and RLC.

The first one is classified as statistical encoding

method. The second technique is one of the content

dependent coding techniques. So, the prop

will take the advantages from the two techniques

Arithmetic coding: Arithmetic coding is variation of

coding method called Shannon

calculate the p(x
n
) which is a probability mass function

and F(x
n
) which is the cumulative distribution function,

for x
n
 as the source sequence in a sub

The amount of symbols in the bulletin increases,

the breach acclimated to represent it becomes smaller.

Sequences of antecedent symbols are encoded together.

There is no one-to-one accord amid antecedent symbols

and cipher words. Slower than Huffman coding but

about achieves bigger compression. An arrangement of

antecedent symbols is assigned an individual addition

cipher chat which corresponds to a sub

1]. Figure 1 Asadollah et al. (2011) shows the flow

chart which describes how the algorithm works

RLC coding: The second algorithm is Run

coding (RLC); also it is a lossless data compression

algorithm, it is used to minimize the number of

repeating characters into an input-string. Symbols can

be encoded by two bytes: one for the symbol, and the

second one for the count. The RLC coding method can

compress any kind of data but cannot accomplish

m flow chart

This study focused only on two of the lossless

compression techniques: Arithmetic Coding and RLC.

The first one is classified as statistical encoding

method. The second technique is one of the content

dependent coding techniques. So, the proposed method

will take the advantages from the two techniques.

Arithmetic coding is variation of

coding method called Shannon-Fano-Elias, it is

) which is a probability mass function

distribution function,

as the source sequence in a sub-interval [0,1].

amount of symbols in the bulletin increases,

represent it becomes smaller.

Sequences of antecedent symbols are encoded together.

one accord amid antecedent symbols

and cipher words. Slower than Huffman coding but

about achieves bigger compression. An arrangement of

antecedent symbols is assigned an individual addition

cipher chat which corresponds to a sub-interval in [0,

. (2011) shows the flow

chart which describes how the algorithm works.

The second algorithm is Run-Length

coding (RLC); also it is a lossless data compression

algorithm, it is used to minimize the number of

string. Symbols can

be encoded by two bytes: one for the symbol, and the

second one for the count. The RLC coding method can

compress any kind of data but cannot accomplish

Res. J. Appl. Sci. Eng. Technol., 10(7): 736-741, 2015

738

Fig. 2: RLC flow chart

Table 1: Input/output string example using Huffman and arithmetic

Symbol Probability

Huffman

codeword

Arithmetic

(sub-interval)

K 0.05 10110 (0.00, 0.10)
A 0.2 00 (0.10, 0.25)

S 0.1 1010 (0.25, 0.37)

P 0.05 10111 (0.37, 0.55)
E 0.3 11 (0.55, 0.85)

R 0.2 01 (0.85, 0.95)

! 0.1 100 (0.95, 1.00)

significant compression ratios in compare with the

other techniques. The following Fig. 2

(cpsc.ualr.edu/milanova) shows how it works.

Why used arithmetic coding over Huffman coding?

A preferable compression results comes from arithmetic

coding because it encodes a message as complete

segment rather than separate symbols. The complexity

of arithmetic algorithm is O(n
2
) but the complexity of

Huffman algorithm is O(n log2 n + n log2 log2 n), where

n is the number of symbols that been used. So, the

complexity of arithmetic algorithm is bigger than

Huffman complexity but for this reasons that selected

Arithmetic over Huffman: arithmetic accommodates

adaptive models and isolate between coding and model.

Moreover, it does not need to convert each symbol into

a complete number of bits. Nevertheless, it needs a lot

of data computation such as division and multiplication.

Also, Arithmetic always gives a lowest number of bits

in compression.

So, to explain the efficiency of the compression

ration using Arithmetic and Huffman; the following

example will be used. Table 1 shows the data that been

compressed by the two methods (Huffman and

Arithmetic).

In result of compression for the same data

arithmetic coding give us 17 bit (00011111001001111)

code-word, on the other hand Huffman compression for

the same data gives 24 bit (00, 00, 1010, 10111, 1010,

1010, 100) code-word.

Abdmouleh et al. (2012) introduced a lossless

image compression algorithm by merging between

Arithmetic coding with RLC.

They employ both the advantages of the Arithmetic

coding models (even Adaptive or Static) and the

efficiency of the RLC to supply an algorithm which

could be helpful in some applications like medical

applications. Figure 3 (Abdmouleh et al., 2012) shows

the framework of their method:

Abdmouleh's method (Abdmouleh et al., 2012) is

based on the concept that an image is classified or

clustered by its similar portions. With RLC, the bit

planes that have high weights are classified by

sequences of 0 and 1 are sequentially encoded, whereas

the other bit planes will be encoded by the arithmetic

Res. J. Appl. Sci. Eng. Technol., 10(7): 736-741, 2015

739

Fig. 3: Merging arithmetic (static/adaptive) with RLE to

compress bit plane

coding models. They concluded that by combining

Arithmetic coding models with the RLC, a high degree

of compression and adaptation efficiency can be

achieved.

PROPOSED METHOD

Some compression technique disadvantages:

Huffman coding consistently steps rounding errors,

because its cipher breadth is belted to several bits. It is

also provide to convert every symbol into a complete

integral number of bits. However, it suffers from

several shortcomings.

Arithmetic and RLC compression technique

advantages: Arithmetic Coding does not use discrete

number for each bit, instead of that arithmetic coding

handling the whole symbols as a one unit. At the other

side, in Huffman coding low anticipation symbols use

abounding bit, top anticipation symbols use beneath

bits. Arithmetic coding is slower than Huffman coding

but about achieves bigger compression.

Combining arithmetic and RLC compression

technique advantages: This technique of combining

two of much effected and fast techniques will achieve a

high degree of compression and adaptation efficiency.

It will reduce the compression ratio by reducing the

number of bit; after apply arithmetic coding on the

original data then having the result of the compression

process, then after that apply RLC on the compressed

data. The following Fig. 4 shows how the proposed

method works.

In order to explain how the proposed technique

does works, Arithmetic coding and Huffman coding

will be applied on Input String: AASPSS!. Figure 5 is a

graphical representation for Table 2 which describes an

arithmetic coding and the distribution its corresponding

probability.

According to the Table 2, AC works as follow:

every symbol is assigned with its probability within the

Fig. 4: Proposed method flow diagram

Table 2: Input string example for arithmetic coding

Symbol Probability Sub-interval

K 0.1 (0.00, 0.10)
A 0.15 (0.10, 0.25)
S 0.12 (0.25, 0.37)
P 0.18 (0.37, 0.55)
E 0.3 (0.55, 0.85)
R 0.1 (0.85, 0.95)
! 0.05 (0.95, 1.00)

Table 3: Input string example for Huffman coding

Symbol Probability Huffman
codeword

K 0.1 10110
A 0.15 00
S 0.12 1010
P 0.18 10111
E 0.3 11
R 0.1 01
! 0.05 100

complete corresponding interval. Symbol “A” is taken
as the first symbol from the input-string "AASPSS!"
and its sub-interval [0.10, 0.25] is chosen. The next
symbol “A” is treated as the previous symbol, because
they have the same sub-intervals [0.10, 0.25]. The sub-
interval [0.115, 0.137] with be the corresponding
interval for the symbol "S" based on the AC steps in
Fig. 1. The same steps are repeated until the symbol "!"
is reached as the last symbol in the input-string. Fig. 5
shows how the sub-intervals and bit stream will be
manipulated for each symbol. The last symbol
probability will be chosen from the last interval
[0.1217] and transformed into its corresponding binary
code-word (00011111001001111).

If Huffman Coding is applied at the same above

example using the input string and their probabilities as

in table 3, then the codeword can be compared that will

result from the Huffman with codeword that already

resulted from an Arithmetic coding.

Huffman Coding Codeword: 00, 00, 1010, 10111,

1010, 1010, 100; Result: So in arithmetic coding give

us 17 bit codeword, but in Huffman 18 bit codeword.

Appling RLC after get the compression code from

Arithmetic Coding:

Res. J. Appl. Sci. Eng. Technol., 10(7): 736-741, 2015

740

Fig. 5: Arithmetic coding example

Fig. 6: Comparison of compression ratio for Huffman and arithmetic algorithms using different image sizes

00011111001001111 = (0, 3) (1, 5) (0, 2) (1, 1) (0,
2) (1, 4)

The length of the codeword that resulted from

Arithmetic Coding is 17 bit then after applying the RLC
the length of the codeword was 12 bit and compression
code. However, if RLC was applied after the Huffman
coding, the result will be:

000010101011110101010100 = (0, 4) (1, 1) (0, 1)

(1, 1) (0, 1) (1, 1) (0, 1) (1, 4) (0, 1) (1, 1) (0, 1) (1,

1) (0, 1) (1, 1) (0, 1) (1, 1) (0, 2)

Then as noted that Huffman followed by RLC

either not improve the compression rate or improve it

by slight percentage in compare with an Arithmetic

followed by RLC. In other words, the performance of

AC is mainly similar or better than Huffman technique.

Finally implementation of RLC after an Arithmetic

coding gives better result than implementation of RLC

after Huffman coding for one important thing; that

Arithmetic coding always give better compression ratio

than Huffman.

EXPERIMENTS ANALYSES

This section explains the experiments achieved in

this study which accomplished on test image set

consists from different 5 image sizes and 5 samples for

each size with bit-depth equals to 8-bits for all of them.

The tested images are squared and their sizes are

ranging from 2048 to 128. The objective of testing

varying sizes of images is to validate the proposed

technique. These images are mainly used in image

compression and processing fields, because they have a

good level of complexity. Matlab programming tool is

used to do the experiments which implemented on both

algorithms (Arithmetic and Huffman followed by

RLC).

5.41

4.794.48
4.06

3.72

9.01

5.79

4.91

4.05

3.95

0

1

2

3

4

5

6

7

8

9

10

2048 X 20481024 X 1024512 X 512256 X 256128 X 128

Compression

ratio

Image size

Huffman + RLC Arithmetic + RLC

Res. J. Appl. Sci. Eng. Technol., 10(7): 736-741, 2015

741

Table 4: Average of compression results on test image set

Test image size

Compression ratio (bits/sample)

Huffman + RLC Arithmetic + RLC

2048×2048 5.41 9.01

1024×1024 4.79 5.79

512×512 4.48 4.91
256×256 4.06 4.05

128×128 3.72 3.95

The compression ratio results of all experiments of

the implemented algorithms, Huffman and arithmetic

coding followed by RLC are summarized in Table 4.

The numbers in the second and third columns are the

computed averages of the compression ratio of

(Huffman+ RLC) and (Arithmetic coding + RLC)

respectively. The results show that the average of

compression ratios achieved by Arithmetic coding

followed by RLC (with different image sizes) are

always better than the Huffman coding + RLC.

As shown in the table, Arithmetic Coding followed

RLC achieves higher average of compression ratio than

Huffman with RLC. The average of compression ratio

ranges from 3.95 to 9.01 depending on the image size.

It is well known that the compression ratio can be

achieved by dividing the original image size by the

compressed image.

According to the results in Table 4, a general

behaviour can be noticeable, where the increasing in

image sizes from 128×128 to 2048×2048, causes an

increased improvement of compression ratio averages

of the Arithmetic coding more than the Huffman

coding. For example, the compression ratio averages of

Huffman algorithm for image sizes of 1024×1024 and

2048×2048 was 4.79 and 5.41, respectively. While in

Arithmetic coding was 5.79 and 9.01, respectively.

Figure 6 is a graphical representation for Table 4 which

shows the improvements achieved by the proposed

technique.

CONCLUSION

Image Compression will always need new

techniques to be implemented, because of the instant

need of compression ratio and keeping a quality, not

lost any information, and reduce the size with this

measure (Quality, Size). So the efficiency of the

compression will be increased by combining Arithmetic

code with RLC. However, many researchers in the

literature concluded that an Arithmetic coding is a time-

consumed technique in compare with Huffman.

However, from the compression performance

perspective arithmetic code gives similar or better

efficiency than Huffman technique. As an answer of the

main question of this paper we can say that an

Arithmetic algorithm followed by RLC improves the

compression ratio generally and results better

compression ratio than Huffman algorithm.

REFERENCES

Abdmouleh, M.K., M. Atef and M.S. Bouhlel, 2012. A

new method which combines arithmetic coding

with RLE for lossless image compression. J. Softw.

Eng. Appl., 5: 41-44.

Ahmed, S., G. Mehdi and R. Ali, 2013. Large dataset

compression approach using intelligent technique.

J. Adv. Comput. Sci. Technol. Res., 3(1).

Asadollah, S., B. Ramin, R. Mobin and M. Mostafa,

2011. Evaluation of Huffman and arithmetic

algorithms for multimedia compression standards.

Int. J. Comput. Sci. Eng. Appl., 1(4).

Goetz, G. and D. Leonard, 1991. Data compression and

database performance. Oregon Advanced

Computing Institute (OACIS) and NSF Awards

IRI-8805200, IRI-8912618 and IRI-9006348.

Goloumb, G., 1966. Run length encoding. IEEE

T. Inform. Theory, 12: 399-401.

Huffman, D., 1952. A method for construction of

minimum-redundancy codes. P. IRE, 40(9):

1098-1101.

Kodituwakku, S. and U. Amarasinghe, 2007.

Comparison of lossless data compression

algorithms for text data. Indian J. Comput. Sci.

Eng., 1(4): 416-425.

Pu, I.M., 2006. Fundamental Data Compression.

Elsevier, Britain.

Singh, V., 2010. Recent patents on image compression:

A survey. Recent Pat. Signal Process., 2(2):

47-62.

Witten, I., R. Neal and J. Cleary, 1987. Arithmetic

coding for data compression. Commun. ACM, 30:

520-540.

