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Sliding Control 
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Abstract: In this study, the synchronization of the outputs for the uncertain chaotic systems with different-orders is 
presented. An adaptive fuzzy system has been used to approximate the uncertain nonlinear terms. The adaptive 
fuzzy control strategy is estimated to guarantee output-synchronization of the master-slave chaotic systems based on 
sliding control theorem. By using a dynamic compensator, the performance of the closed-loop systems in sliding 
mode is improved. The proposed controller can ensure synchronous error converges to zero. Simulation results are 
provided to illustrate the effectiveness of the proposed method. 
 
Keywords: Chaotic system, fuzzy sliding control, output-synchronization, synchronization 

 
INTRODUCTION 

 
Since the possibility of controlling chaos was 

proved by Pecora and Carroll (1990) in early 90’, the 
chaos synchronization has received noticeably attention. 
Its many potential applications such as secure 
communication, biological systems, digital 
communication, chemical reaction and design and soon 
have been investigated. For chaotic synchronization, 
there are several methods proposed: complete 
synchronization (Pecora and Carroll, 1990; Agiza, 
2004), phase synchronization (Rosenblum et al., 1996), 
lag synchronization (Boccaletti and Valladares, 2000; 
Chen et al., 2007; Miao et al., 2009), generalized 
synchronization (Wang and Guan, 2006), modified 
function projective synchronization (Li and Li, 2011), 
state function synchronization (Li et al., 2012) etc. 

Synchronization is not always done between 
systems with the same order in natural systems (Femat 
and Solís-Perales, 2002). For example, the 
synchronization between human heart and lungs, the 
synchronization of human neurons in the brain (Terman 
et al., 1998; Schafer et al., 1999). Laoye et al. (2008) 
investigated reduced-order synchronization of the rigid 
body based on back-stepping control. Active control for 
the Chaos synchronization of different order system was 
presented (Ge et al., 2006). Rodriguez et al. (2008) 
investigated Quasi-continuous high-order sliding-mode 
controllers for reduced-order chaos synchronization. 
Vincent and Guo (2009) presented a simple adaptive 
control for full and reduced-order synchronization of 
time-varying uncertain chaotic systems. Xu et al. (2008) 
investigated the full- and reduced-order synchronization 
of a class of time-varying uncertain systems.  

Motivated with the available results, one aims at 
proposed a new synchronization strategy: 
synchronization of the outputs of the master-slave 
chaotic systems with different-order and uncertainties. 

Compared with available results, the main 
contributions of our work include: firstly, presenting the 
output-synchronization strategy for the different-order 
chaotic systems; secondly, considering the parameters 
of the systems variable; thirdly, designing a dynamic 
compensator, which improve the performance of the 
closed-loop systems in sliding mode. Finally, an 
example is demonstrated to verify the effectiveness of 
the criterion proposed. 
 

METHODOLOGY 
 
Problem description: Consider the master-slave 
system as below: 
 

( ) ( , , ),x f x f x tσ= + ∆&                                           (1) 

          

1 1 ,z C x=                                                          (2) 

 

( ) ( , , ) ,y g y g y t D uυ= + ∆ +&                             (3) 

 

2 2 .z C y=                                                          (4) 

 
where, x ∈ ��, y∈ ��, are states, u∈ ��is input and ��, 
�	 ∈ ��are outputs (1≤p≤min {n, m}). Vector functions 
f (x) ∈ ��, g (y) ∈ ��) and ∆f (x, σ, t) ∈ ��, ∆g (y, υ, t) 
∈ ��

 
are known nonlinear terms and the nonlinear  

uncertainty experienced by the systems. It is assumed 
that all the nonlinear functions are smooth enough. σ 
and υ are parameter disturbances and satisfying 
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1 2,σ δ υ δ≤ ≤ , 
1

δ
 

and 
2

δ
 

are positive constants.

n pD R ×∈ is full column rank constant matrix, 
� ∈
��×� and 
	 ∈ ��×�

 
are full row rank ones. 

 
Design of the Fuzzy Logic System (FLS): The i

th
 

fuzzy rule is written as: 

�
: if �� 
is  ��




 
, �	 is �	


,…，�� 
is ��


, Then f
 
is �


 , 

l = 1, …, N 
 
where, x = [��, … , ��]�

 
and f

 
are the input and output of 

the fuzzy logic system, ��

, �


 are the fuzzy sets. Fuzzy 
logic system could be expressed as follows: 
 

1 1

1 1

( )
( )

[ ( )]

l
i

l
i

nN

l iFl i

nN

iFl i

w x
f x

x

µ

µ
= =

= =

=
∑ ∏
∑ ∏

                             (5) 

 
where, ��

 
is the adaptive parameter, the fuzzy basis 

function is defined as: 
 

1

1 1

( )

[ ( )]

j
i

l
i

n

iFi

j nN

iFl i

x

x

µ
ξ

µ
=

= =

=
∏

∑ ∏
                             (6) 

 
Suppose w = [��, … , ��]�, ξ = [ξ�, … , ξ�]�, then 

fuzzy system could be written as: 
 

( ) Tf x w ξ=                                (7) 

 
Lemma 1: g (x) is the continuous function defined at 
the tight set Ω, then ∀ �>0, there exists the fuzzy 
system (7), such that: 
 

sup ( ) ( )
x

g x f x ε
∈Ω

− ≤                  (8) 

 
The objective of this study is to synchronize the 

outputs of the different-order master-slave chaotic 
systems.  
 

MAIN RESULTS 
 

The synchronization error of the outputs for the 
systems (1) and (2) is defined as e = ��- �	, i.e.: 

 

2 1e C y C x= −                                             (9) 

 
By derivative of both sides of (9), we obtain: 

 

2 1e C y C x= −& & &
2 ( ( ) ( , , ) )C g y g y t Duυ= + ∆ +

1( ( ) ( , , ))C f x f x tσ− + ∆  

 

Then the error dynamics is given by: 
 

e F F u= + ∆ +&                                           (10) 

where,  
 

2 1
( ) ( )F C g y C f x= −  

2 1( , , ) ( , , )F C g y t C f x tυ σ∆ = ∆ − ∆  

 

2
u C Du=

 
 

In order to design an appropriate sliding surface for 

the error system (10), we introduce a compensator: 

 

w ke w= −&                 (11) 

 

where, w∈ �� is the state of the compensator. k∈ ��×�
 

is the matrix to be designed later. 

Consider the following sliding surface: 

 

s Ce w= +                 (12) 

 

where C ∈ ��×� will be decided later. Differentiating 

the sliding surface along the solution of the error 

system (10) and let s = 0, then w = -Ce. so we have: 

 

s Ce w= +& & & ( ) ( )C F F u ke w= + ∆ + + −

( ) ( )C F F u k C e= + ∆ + + +                            (13) 

 

Let  �� = 0. We get an equivalent control � !: 
 

1( ) ( )eu F F C k C e−= − + ∆ − +               (14) 

 

By substituting (14) into (10), it yields:  

 
1( )e C k I e−= − +&                                           (15) 

 

where, I ∈ ��×� is identity matrix. 

From the above, we obtain the conclusion as 

bellow. 
 

Theorem 1: the sliding mode dynamic Eq. (15) is 

asymptotically stable if there exist matrices C, k∈ ��×� 

such that: 
  

1 2 0T TC k k C I− −+ + <                            (16) 

  

Proof: Consider the Lyapunov function: 

 

0

TV e e=                              (17) 

 

The time derivation of the "# is: 

  

0 2 TV e e=& &
1( 2 ) 0T T Te C k k C I e− −= − + + <              (18) 
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So the sliding mode equation is asymptotically 

stable. This completes the proof. 

According to lemma 1, fuzzy function Ψ
 
is used to 

approximate the uncertain nonlinear function ∆F. For 

convenience, we set: 
 

F ψ ε∆ = +                                                         (19) 

 

1[ , , ] ,T

pψ ψ ψ= K
*T

i i i
ψ ω θ=

 
 

1
ˆ ˆ ˆ[ , , ] ,T

pψ ψ ψ= K ˆˆ T

i i iψ ω θ=  

 

1[ , , ] ,T

pψ ψ ψ=% % %K
T

i i iψ ω θ= %%  

 

where, � is approximating error, bounded and unknown. 

�$ and %& are the estimates of %∗ and  �, respectively. %�
∗ 

is the optimal values of %�, %�
∗ is assumed to be constant 

and unknown. Note that: %( = %∗-%&, �) = � -�$. 

The adaptive fuzzy control law is proposed as: 

 
1

2( ) ( )
k

u C D F u u−
∆= − + +                            (20) 

 

where,   

 

ˆ ˆ ( )u k C eψ ε∆ = + + +                             (21) 

 
1

0( )
k
u s s

βµ µ −
= +                                          (22) 

 

and *# , * ∈ ��×�

 
satisfying: 

 

0 0 0T TC Cµ µ+ > , 0T TC Cµ µ+ >  

 

1 0 0min{ ( )}T Teig C Cλ µ µ= +  

 

2 min{ ( )}T Teig C Cλ µ µ= +  

 

Then, it is easily obtained: 

 
1( )e C k I e ψ ε−= − + + +% %&

1

0( )s s
βµ µ −

− +         (23) 

 

Substituting (23) into (13) yields: 

 

s Ce w= +& & &  
1

1

0

( ( )

( ) ) ( )

C C k I e

s s k C e
β

ψ ε

µ µ

−

−

= − + + +

− + + +

% %
 

1

0( ( ) )C s s
βψ ε µ µ −

= + − +% %                            (24) 

 

Adaptive law is given by: 

1
ˆ 2 ( , , ) T

p
diag w w C sθ = −

&
K                                 (25) 

 

ˆ 2 TC sε = −&                                            (26) 

 

Theorem 2: Consider the sliding surface (12). Using 

the adaptive fuzzy control law (20), adaptive law (25) 

and (26), then, the error e will move toward the 

switching surface and reach the sliding surface s = 0. 

And the error system (10) is asymptotically stable with 

this controller.  

 

Proof: Consider the following Lyapunov function: 

 

1 1

2 2

T T TV s s θ θ ε ε= + +% % % %               (27) 

 

Taking derivative of both sides of (27) with 

respective to time yields: 

 

ˆ ˆ2 T T TV s s θ θ ε ε= + +
& &%& %&  

1

0

1

0

2 ( ( ) )

ˆ ˆ

2 ( ) 2 2

ˆ ˆ

T

T T

T T T

T T

s C s s C C

s C s s s C s C

β

β

µ µ ψ ε

θ θ ε ε

µ µ ψ ε

θ θ ε ε

−

−

= − + + +

+ +

= − + + +

+ +

% %

& &% %

% %

& &% %

 

1 1
1

0
2 ( ) 2

T

T T

T

p p

w

s C s s s C

w

β

θ
µ µ

θ

−

 
 

= − + +  
 
 

%

M

%

 

ˆ ˆ2 T T Ts Cε θ θ ε ε+ + +
& &%% %  

1 0

2

0

T

T

T

p

w

s C

w

θ

 
 

=  
  

K

%K K K

K

 
1

02 ( )Ts C s s
βµ µ −

− +  

ˆ ˆ2 T T Ts Cε θ θ ε ε+ + +
& &%% %                                           (28) 

 

Substituting (25) and (26) into (28), we get: 

 
1

02 ( )TV s C s s
βµ µ −

≤ − +&  

0 0

1

( )

( ))

T T T

T T

s C C s

s s C C s
β

µ µ

µ µ−

≤ − +

− +
 

2 1

1 2 0s s
βλ λ +

≤ − − <                            (29) 

 

It proves the conclusion.  

 

Simulation studies: In this section, we will provide an 

example to show the effectiveness of the proposed 

method. 
Consider following chen chaotic system: 
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Fig. 1: The attractor of master system 

 

1 2 1 2 3

2 1 1 3 2 4

3 3 1 2

4 2

( )x a x x ex x

x cx dx x x x

x bx x x

x hx

= − +
 = − + +


= − +
 =

&

&

&

&

              (30) 

 
The system (30) exhibits chaos in Fig. 1, when the 

parameters a = 35, b = 4.8:
 

 

25, 5, 12c d h= = =                                                (31) 

 
The chen chaotic system with uncertainty as master 

system is given by: 
  

( ) ( , , )x f x f x tσ= + ∆&                             (32) 

 

1 1z C x=                 (33) 

 
where, 

 

2 1 2 3

1 1 3 2 4

3 1 2

2

( )

( )

a x x ex x

cx dx x x x
f x

bx x x

hx

− + 
 − + + =
 − +
 
   

 

1

0.4 0.2 0.1 0.1

0 0.4 0 0.2
C

 
=  
   

 

[ , , , ]Ta b c rσ = ∆ ∆ ∆ ∆ , 0.06 sin ,a t∆ =  

 
0.04 sin ,b t∆ = 0.07 cosc t∆ =  

 
0.03sinr t∆ =  

 

2 1 2 3

1 1 3

3

2

( )

( , , )

2sin

3cos 2
0.1

2 cos3

3sin 2

a x x ex x

cx dx x
f x t

bx

hx

t

t

t

t

σ

∆ − + ∆ 
 ∆ + ∆ ∆ =
 ∆
 

∆ 

 
 
 +
 
 
   

 
 

Fig. 2: The attractor of slave system 

 

 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 
 
Fig. 3: The synchronization outputs 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
Fig. 4: The control errors 

 
Consider following Lü chaotic system with 

uncertainties and input as slave one: 
 

( ) ( , , )y g y g y t Duα= + ∆ +&                            (34) 

10

-10

0

0 2 4 6 8 10
Time (s)

Z
  
 ,

 Z
1
1

2
1

Z

Z

11

21

   5

   -5

0

0 2 4 6 8 10
Time (s)

Z
  

 ,
 Z

1
2

2
2

Z

Z

12

22

  3

-3

0

0 2 4 6 8 10
Time (s)

e
e

  
 ,

1
2

e 1

2  2

  1

-2

-1



 

 

Res. J. Appl. Sci. Eng. Technol., 10(7): 730-735, 2015 

 

734 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: The control inputs u1, u2 

 

2 2z C y=                              (35) 

 

where, 

 

2 1

1 2 1 2

3

(25 10)( )

( ) (28 35 ) (29 1)

(8 ) / 3

y y

g y y y y y

yy y

α
α α

α

+ − 
 = − + − − 
 − +   

 

2 1

1 2

3

( ) 0.01sin

( , , ) ( ) 0.02sin 2

0.2cos 4

y y t

g y t y y t

y t

α
υ α

α

∆ −   
   ∆ = ∆ + +   
   ∆     

 

2

0.4 0.2 0.1

0 0.4 0.2
C

 
=  
 

, 10 5 0

0 10 0
D

 
=  
 

  

 

υ = ∆α = 0.01 sin 2t. When parameter α = 0.8, u = 0, ∆g 

(y, υ, t) = 0, the system (33) is chaos. Figure 2 shows the 

attractor of the Lü system (33). Now, by using control 

law (20), adaptive law (25), (26) and choosing *# = µ = 

5I, C = I, The simulation results of the proposed 

controller are shown in Fig. 3 to 5. From Fig. 3 to 5, it is 

seen that synchronous error converges to zero and 

controller is bounded.  

 

CONCLUSION 

 

In this study, a new synchronization strategy has 

been presented. An adaptive fuzzy controller has been 

constructed. The error of the output-synchronization for 

different-order chaotic systems with uncertainties is 

stable based on the designed control law and sliding 

mode control theorem. This synchronous method is in 

some sense an extension of the traditional ones. It may 

have some potential applications in secure 

communication, etc.  
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