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Abstract: In this study, generating association rules with improved Apriori algorithm is proposed. Apriori is one of 
the most popular association rule mining algorithm that extracts frequent item sets from large databases. The 
traditional Apriori algorithm contains a major drawback. This algorithm wastes time in scanning the database to 
generate frequent item sets. The objective of any association rule mining algorithm is to generate association rules in 
a fast manner with great accuracy. In this study, a modification over the traditional Apriori algorithm is introduced. 
This improved Apriori algorithm searches frequent item sets from the large databases with less time. Experimental 
results shows that this improved Apriori algorithm reduces the scanning time as much as 67% and this algorithm is 
more efficient than the existing algorithm. 
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INTRODUCTION 

 
Now a days Data mining has been widely used and 

unifies research in various fields such as computer 

science, networking and engineering, statistics, 

databases, machine learning and Artificial Intelligence 

etc. There are different techniques that also fit in this 

category including association rule mining, 

classification and clustering as well as regression 

Apriori algorithm is the most efficient candidate 

generation approach proposed by Agrawal et al. (1993). 

To count the support of item sets, it uses breadth-first 

search strategy and to utilize the downward closure 

property of support, it uses candidate generation 

function. Apriori algorithm is an iterative one known as 

level-wise search and it uses the prior knowledge of 

frequent item set properties in generating association 

rules (Agrawal et al., 1993). Apriori algorithm works 

with the following principle. 
If an item set is frequent, then all of its subsets 

must also be frequent. 
Based on this principle, the algorithm generates 

candidate item sets from frequent item sets. The 
frequency of the item sets are defined by counting their 
occurrence in transactions. The process of Apriori 
algorithm is twofold: 
 

• First it determines the set of frequent 1-item sets 

• Then these frequent item sets and the minimum 
confidence  are  used  to  generate association rules 

Suppose {A, B, C, D and E} is a item set. All the 

frequent item sets are represented in the below diagram. 

Apriori principle says that if {C, D, E} is a frequent 

item set, then any transaction that contains {C, D, E} 

must also contains its sub sets such as {C, D}, {C, E}, 

{D, E}, {C},{D} and {E} must also be frequent. This is 

said to be Monotonicity property of Apriori algorithm 

(Buehrer et al., 2007). 

Alternatively, if an item set is infrequent, then all 

of its super sets must also be infrequent. Suppose {A, 

B} is infrequent, then {A, B}, {A}, {B} are also 

infrequent. This reduces the exponential search known 

as support-based pruning (Buehrer et al., 2007). It also 

filters the candidate item sets generated in the previous 

iteration. This property is also known as anti-monotone 

property of Apriori algorithm by Yanbin and Chia-Chu 

(2006) and Sandhu et al. (2010). 

The main objective of this study is to reduce the 

number of frequent item sets. Therefore, in order to 

improve the efficiency of Apriori algorithm and also 

reduce the time complexity. 
 
Frequent item set generation: Before beginning the 
generation process, minimum support must be defined. 
During the frequent item set generation phase, every 
item in the data set is taken as candidate 1-item set 
initially. After counting their supports, the candidate 
item sets are discarded. Candidate 2-item sets are 
generated in the next iteration by joining two candidate 
1-item sets. Next database transactions are scanned and 
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the support count for each candidate 2-item set is 
collected. 

Care must be taken such that candidate 2-item sets 
are generated with only frequent candidate 1-item sets. 
This is because of the Apriori principle which defines 
that “if an item set is frequent, then all of its sub sets 
must also be frequent”. Agrawal et al. (1993) describes 
the Set of frequent 2-item sets from the set of candidate 
2-item sets are determined in the next step. This is done 
by selecting those candidate 2-item sets that are having 
minimum support. 

Apriori property is used only from generating 
candidate 3-item sets. In order to generate candidate 3-
item sets, two frequent candidate 2-item sets are joined 
and resulting set is the candidate 3-item set. Pruning is 
performed to reduce the size of candidate 3-item set by 
Fang et al. (2009). It also helps us to avoid heavy 
computation due to large candidate item set by Buehrer 
et al. (2007). 

The above procedure is repeated till the algorithm 
generates empty candidate item sets i.e., having found 
all the frequent items. In the next phase, these generated 
frequent item sets are used to get strong association 
rules. El-Hajj and Zaiane (2006) described the meaning 
of strong association rules is that the rules that satisfy 
both minimum support and minimum confidence. 

 

METHODOLOGY 

 

Generating association rules from frequent item 
sets: For each frequent item set, generate all non-empty 
sub sets of the frequent item sets. Calculate count of 
item set divided by count of subsets. If this value is 
greater than or equal to minimum confidence threshold 
defined by the user, include the new rule else reject. For 
example, let sc is the subset confidence, let (I1, I2,… Ik) 
be the item set. Let ms be the minimum support. Let the 

new rule R represented as R: I1
^
I2 ⇒ I5. The confidence 

of rule R is calculated as: 
  

},{

},,{
)(

21

521

IIsc

IIIsc
Rconfidence =  

 
If the output value is greater than minimum 

support, accept the rule else reject i.e.: 
 
If confidence (R) ≥ms  
 accept 
else 
 reject 

 

Algorithm apriori: 

 
Procedure Apriori (D, ms) 

// D is the transactional database and ms is the 
minimum support 
  

k = 1 

}})({/{ msNiIiiFk ×≥∧∈= σ
 

// To find all the frequent 1-item sets  
 repeat 
 k = k+1 
 Ck = apriori_gen (Fk-1) 
// To generate candidate item sets 
for each transaction t in D do 
// Increment the count of all candidates in Ck that are 
contained in t 
Ct = subset (Ck, t) 
//Identify all candidates that belong to t  
for each candidate item set belonging to Ct Do 
 σ (c) = σ (c) +1 
 // Increment support count 
 end for 
 end for 

}})({/{ msNcCccF kk ×≥∧∈= σ  

// To extract frequent k-item sets  
 Until Fk = φ 
 Return Uk Fk 
  

The subset function which is described in the 
above procedure determines all the candidate item sets 
in Ck that are available in each database transaction. 
The algorithm eliminates all candidate item sets whose 
support count is less than minimum support (Li et al., 
2008). The algorithm stops when no more frequent item 
sets are generated. Apriori algorithm is a level wise 
algorithm since it traverses the item set lattice one level 
at a time beginning from frequent 1-item sets to 
frequent k-item sets, where k is the maximum size of 
frequent item sets by Li et al. (2008). Moreover, it 
adopts generate and test strategy since new candidate 
item sets are generated from frequent item sets found in 
the previous iteration. 
 
Candidate item set generation and pruning: The 
process of generating new candidate k-item sets from 
frequent (k-1) item sets generated in the previous 
iteration is said to be candidate item set generation 
process. Pruning eliminates some of the candidate k-
item sets using support-based pruning strategy. The 
effectiveness of the candidate item set generation 
procedure is analyzed by the following features: 
 

• The algorithm must not generate unnecessary 
candidate item sets. 

• It must generate complete candidate set, partial or 
incomplete candidate item set are of no use for 
generating association rules. 

• There should not be any repetition in candidate 
item set generation process. The process should be 
unambiguous. 

 
Support counting: It is the process of determining the 
frequency of occurrence of a particular candidate item 
set that is used in candidate pruning step. One way of 
doing this is to compare each transaction against every 
candidate item set and update support counts. Another 
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way to perform support counting is to calculate the item 
sets contained in each transaction and update the 
support counts of their respective candidate item sets by 
Fakhrahmad et al. (2007). 

For Apriori algorithm, support counting is 
performed by using hash table. For this, candidate item 
sets are partitioned into different buckets and stored in a 
hash tree. Item sets that are contained in each 
transaction are hashed according to their buckets. 
Candidate item sets are matched with other candidate 
item sets within the same bucket. 
 

COMPUTATIONAL COMPLEXITY 
 

The Apriori algorithm’s efficiency can be affected 
by the following factors. 

 
Low support value: Low support threshold values 
often results more frequent data items. Since frequent 
item sets increases, algorithm needs more passes over 
the database resulting poor computational efficiency. 
 
Dimensions of database: If the dimensionality of the 
data increases, the computation and I/O costs will 
increase. 
 
Number of transaction: Efficiency of the Apriori 
algorithm decreases with large number of transactions. 
Average transaction width is also having impact on 
Apriori algorithm efficiency. As average transaction 
width increases, more candidate item sets must be 
examined. 
 
Limitations of apriori algorithm: Though Apriori 
algorithm is clear and simple, it contains certain 
drawbacks such as:  
 

• Needs several iterations of the data 

• It uses uniform minimum support threshold 

• Difficult to find rarely occurring events 

• Poor focus on partition and sampling strategies 
 

The main disadvantage of Apriori algorithm is 
wastage of time to hold a vast number of candidate item 
sets by Liu et al. (2007). Apriori algorithm is inefficient 
and slow when the memory capacity is limited and 
transactions are numerous. 
 
Improved apriori algorithm: There are so many ways 
by which efficiency of the Apriori algorithm can be 
enhanced. For counting item set, hash function can be 
used because an item set whose corresponding hashing 
bucket count is below the threshold cannot be frequent. 
If frequent item sets are minimal, Apriori algorithm’s 
efficiency increases by Ye and Chiang (2006). Kessl 
and Tvrdk (2007) introduce a method by which 
efficiency can be increased is by reducing number of 
transactions. A database transaction is useless if it does 
not contain any frequent k-item set. 

To sum up, all the efficiency enhancing methods 
for Apriori algorithm concentrate mainly on reducing 
the number of frequent item sets. Therefore, in order to 
improve the efficiency of Apriori algorithm, we must 
reduce the time spent for searching frequent item sets 
from the database.  

Our improved Apriori algorithm works by 
scanning all transactions to generate frequent item set. 
The contents are items, corresponding support and their 
transaction IDs in the database. Next, construct 
candidate item set and identify the target transaction to 
generate candidate item sets with minimum support. 
Suppose T is a set of transactions such that T = {T1, T2, 
T3 …. Tm} where m≥1. In each transaction, set of items 
are defined as Ti = {I1, I2, ….. In} where n≥1. For an 
item set, support count which is represented by σ, is the 
frequency of occurrence of an item set in transactions. 
Suppose Ck is the candidate item set of size k and Lk 
represents frequent item set, then our improved Apriori 
algorithm works as follows. 

 First we scan all the Transactions (T) and generate 
L1 containing items, support count and transaction IDs 
where the items are found. Next we generate candidate 

2-item sets C2, by joining L1×L1. Before performing 
remaining scan, use L1 to get the transaction IDs of 
those transactions which have minimum support count 
between x and y. Here x and y are the items belonging 
to candidate 2-item sets. Scanning is one in C2 for only 
these specific transactions. 

The above procedure is repeated for C3 i.e., 
candidate 3-item set with three items such as x, y and z. 
These three items belongs to C3 and to get transaction 
IDs of minimum support count between x, y and z, L1 is 
used: 

 
Improved_Apriori (T, I, minsupport, TID) 
// Generate items, items support, their transaction ID 
L1 = find_frequent_1_itemsets (T); 
for (k = 2; Lk-1 ≠ φ; k++) 
{ 
// Generate candidate item set Ck from Lk-1 

 Ck = candidates generated from Lk-1; 

 // is Cartesian product Lk-1×Lk-1 and eliminating 

any k-1 size  

// item set that is not frequent 

x = get_item_min_sup (Ck, L1); 

// Get the target transaction IDs that contain x 
t = get_transaction_ID (x); 

for (each transaction t in D) do 
{ 
// Increment the count of all candidates in Ck that are 
contained in t 

Lk = candidates in Ck with min support; 
} // end for 
} // end for 
return Uk Lk; 
 
Rule generation: Once frequent item sets are 
generated, efficient association rules are extracted from 
this set. For each frequent k-item set, 2

k
-2 association 
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rules can be generated. From this, rules that have empty 
antecedents or consequents can be ignored. Suppose if 
we have a frequent k-item set Y, then the association 
rules are generated by partitioning the item set Y into 
two non-empty sub sets, X and Y-X. The rules that are 

represented as φ ⇒ Y or Y ⇒ φ are ignored. 
To generate association rules using Apriori 

algorithm, level-wise approach is used. Here level 
refers to the number of items belonging to the rule 
consequent. All the high-confidence rules that have 
only one item are extracted initially. Suppose if {a, c, 

d} → {b} and {a, b, d} → {c}, then these two high-

confidence rules used to generate {a, d} → {b, c} 
candidate rule simply by merging consequents of two 
rules. Algorithm for generating association rules based 
on Apriori method is given below: 
 
 Rule Generation _Apriori  
for each frequent k-item set fk k≥2 do 

 H1 = {i | i ∈ fk}  
// 1-item set consequents of the rule 
 Call ap_gen_rules (fk, H1) 
// calling function to generate association rules 
 end for  
 

The above procedure calls a function that generates 
association rules and passes the rules to this function. In 
the algorithm, we use minconf as the minimum 
confidence threshold value described by the user. The 
procedure which generates association rules are as 
follows: 
 

Procedure ap_gen_rules (fk, Hm) 
K = |fk| 
//size of the frequent item set 
m = | Hm| 
//size of the rule consequent 
if k>m+1 do 

 Hm+1 = Aprior_gen (Hm) 

for each hm+1 ∈ Hm+1 do 
conf = σ (fk) /σ (fk - hm+1) 
if conf ≥ minconf then 

// Checking for minimum confidence and selecting / 
deleting the // rule based the value 

output the rule (fk - hm+1) → hm+1 

else 
  delete hm+1 from Hm+1 

end if 
end for 
call ap_gen_rules (fk, Hm+1) 
end if  

 

RESULT ANALYSIS 

 
A large super market tracks the sales data for each 

item. The stock keeping unit stores the information 
which gives the details of items purchased together. 
The transaction details are as in Table 1. 

Table 1: The transactions 

TID Items 

T1 I1, I2, I5 
T2 I2, I4 
T3 I2, I4 
T4 I1, I2, I4 
T5 I1, I3 
T6 I2, I3 
T7 I1, I3 
T8 I1, I2, I3, I5 
T9 I1, I2, I3 

 

Table 2: The candidate 1-itemset 

Items  Support 

I1 6 
I2 7 
I3 5 
I4 3 

 

Table 3: Frequent 1-itemset 

Items  Support  TIDs  

I1 6 T1, T4, T5, T7, T8, T9 
I2 7 T1, T2, T3, T4, T6, T8, T9 
I3 5 T5, T6, T7, T8, T9 
I4 3 T2, T3, T4 

 
Table 4: Frequent 2-itemset 

Items  Support  Min TIDs  

I1, I2 4 I1 T1, T4, T5, T7, T8, T9 
I1, I3 4 I3 T5, T6, T7, T8, T9 
I1, I4 1 I4 T2, T3, T4 
I2, I3 3 I3 T5, T6, T7, T8, T9 
I2, I4 3 I4 T2, T3, T4 
I3, I4 0 I4 T2, T3, T4 

 

We can define minimum support as 3. To generate 

all frequent 1-item set, we scan all transactions and we 

select transaction IDs that contain these items. We also 

eliminate the candidates that are in frequent/less than 

minimum support. The candidate 1-item set generated 

are as in Table 2. 

Since the minimum support is 3, the item I5 is 

removed from the candidate 1-item set. Next to 

generate frequent 1-item sets, scan all the transactions 

which contains items and their support count and the 

transaction IDs that contains these items. In this step, 

candidates that are infrequent or their support is less 

than minimum support threshold are eliminated. Thus 

the resulting frequent 1-item set is as in Table 3. 
In order to generate candidate 2-item set from the 

above frequent 1-item set, we have to group the item 
with two items in each group and find the support for 
all possible combinations of items. In our example, we 
are using four items that are frequent are combined and 
candidate 2-item set is generated (Table 4). 

Now determine the transactions where we can find 
the item set L1 instead of searching the whole database. 
For example, (I1, I2), the original Apriori algorithm 
will search all the 9 transactions. But in our improved 
Apriori algorithm, we split the item set into I1 and I2 
and find the minimum support. So we search for item 
set (I1, I2) only in the transactions T1, T4, T5, T7 and 
T9.   

Since the item sets (I1, I4) and (I3, I4) is having 
support   level   less  than   the  minimum support value, 
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Table 5: Frequent 3-itemset 

Items  Support  Min TIDs  

I1, I2, I3 2 I3 T5, T6, T7 

T8, T9 
I1, I2, I4 1 I4 T2, T3, T4 

I1, I3, I4 0 I4 T2, T3, T4 

I2, I3, I4 0 I4 T2, T3, T4 

 

Table 6: Number of transactions 

Transaction set 

Total scans 

--------------------------------------------------------- 

Traditional apriori Our improved apriori 

T1 8.325 4.995 

T2 13.500 8.100 

T3 18.450 11.070 
T4 35.400 21.240 

T5 44.516 26.867 

 
Table 7: Comparison of transactions in time 

Transaction set 

Time consumed (in sec) 

-------------------------------------------------------- 

Traditional apriori Our improved apriori 

T1 2.867 1.874 

T2 11.286 4.507 

T3 13.608 5.851 
T4 21.397 9.271 

T5 29.568 12.714 

 

 
 

Fig. 1: Representation of transactions and time 

 

these two frequent item sets are deleted for further 

processing.  

The process is repeated for generating candidate 3-

item set and from that frequent 3-item set are generated. 

The resultant frequent 3-item set are as in Table 5. 

Since no more frequent item set generation is 

possible, we can stop the algorithm and start generating 

association rules.  

 

Performance comparison: If we count the number of 

database scans done by traditional Apriori algorithms 

and improved Apriori algorithm, we observe that there 

is a huge reduction in database scans in the proposed 

method. Since frequent 1-item set generation is 

common for the traditional Apriori algorithm and 

improved Apriori algorithm, both the method needs the 

same number of transactions. From frequent 2-item set 

generation, our improved method outperforms the 

traditional algorithm.  
Total number of transactions needed for the 

traditional Apriori algorithm is 143 and our improved 
Apriori algorithm consumes only 89 transactions to 
generated association rules. The efficiency of improved 
Apriori algorithm is 63% higher than the traditional 
method. 

Next, comparison is done based on time consumed 
by the original Apriori algorithm and the improved 
version. For the above example, the traditional Apriori 
algorithm consumed 1.486 sec to generate frequent item 
sets whereas the improved versions consumed only 
0.861 sec which is again less than 62% of time 
consumed by traditional version. 

We continued our experiment with five different 
transaction sets namely T1, T2, T3, T4 and T5 consisting 
of 555, 900, 1230, 2360 and 3000 transactions, 
respectively. The experiment was conducted on both 
traditional Apriori algorithm and improved Apriori 
algorithm.  
The overall performance is given in the Table 6. 

In the table shown that improved Apriori algorithm 
performs better than existing original Apriori algorithm. 
Next we estimate the time consumed to generate 
association rules by both the methods. The results are 
shown in the Table 7. 

All the above data are plotted in a graph. The time 
consumed in improved Apriori in each group of 
transactions is less than the traditional Apriori and the 
difference increases more and more as the number of 
transactions in a set increases (Fig. 1). 

 

CONCLUSION 

 

In this study, generating frequent patterns using 
improved Apriori algorithm and support chaining is 
presented which reduces the number of scans as well as 
the time needed to generate efficient association rules. 
Improved Apriori algorithm uses large item set 
property, easy to implement, but it repeatedly scan the 
database. Apriori takes more time to scan the large 
Frequents patterns. Here the improvement is done in 
generating candidate item sets and this reduces the 
number of transactions to be scanned as well as the 
time. Whenever the item set increases, the gap between 
traditional and improved versions of Apriori algorithm 
increases in terms of performance and time 
consumption. This improved Apriori algorithm is faster 
than the existing algorithm. 
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