
Research Journal of Applied Sciences, Engineering and Technology 10(11): 1281-1286, 2015

DOI: 10.19026/rjaset.10.1823

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: December 4, 2014 Accepted: April 1, 2015 Published: August 15, 2015

Corresponding Author: P. Alagesh Kannan, Department of Computer Science, Madurai Kamaraj University College, Madurai,

Tamil Nadu, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

1281

Research Article
Generating Frequent Patterns from Large Datasets using Improved Apriori and

Support Chaining Method

1
P. Alagesh Kannan and

2
E. Ramaraj

1
Department of Computer Science, Madurai Kamaraj University College, Madurai, Tamil Nadu, India

2
Department of Computer Science and Engineering, Alagappa University, Karaikudi, Tamil Nadu, India

Abstract: In this study, generating association rules with improved Apriori algorithm is proposed. Apriori is one of
the most popular association rule mining algorithm that extracts frequent item sets from large databases. The
traditional Apriori algorithm contains a major drawback. This algorithm wastes time in scanning the database to
generate frequent item sets. The objective of any association rule mining algorithm is to generate association rules in
a fast manner with great accuracy. In this study, a modification over the traditional Apriori algorithm is introduced.
This improved Apriori algorithm searches frequent item sets from the large databases with less time. Experimental
results shows that this improved Apriori algorithm reduces the scanning time as much as 67% and this algorithm is
more efficient than the existing algorithm.

Keywords: Apriori, ARM, association rule mining, ELCAT, frequent pattern, large datasets, support chaining

INTRODUCTION

Now a days Data mining has been widely used and

unifies research in various fields such as computer

science, networking and engineering, statistics,

databases, machine learning and Artificial Intelligence

etc. There are different techniques that also fit in this

category including association rule mining,

classification and clustering as well as regression

Apriori algorithm is the most efficient candidate

generation approach proposed by Agrawal et al. (1993).

To count the support of item sets, it uses breadth-first

search strategy and to utilize the downward closure

property of support, it uses candidate generation

function. Apriori algorithm is an iterative one known as

level-wise search and it uses the prior knowledge of

frequent item set properties in generating association

rules (Agrawal et al., 1993). Apriori algorithm works

with the following principle.
If an item set is frequent, then all of its subsets

must also be frequent.
Based on this principle, the algorithm generates

candidate item sets from frequent item sets. The
frequency of the item sets are defined by counting their
occurrence in transactions. The process of Apriori
algorithm is twofold:

• First it determines the set of frequent 1-item sets

• Then these frequent item sets and the minimum
confidence are used to generate association rules

Suppose {A, B, C, D and E} is a item set. All the

frequent item sets are represented in the below diagram.

Apriori principle says that if {C, D, E} is a frequent

item set, then any transaction that contains {C, D, E}

must also contains its sub sets such as {C, D}, {C, E},

{D, E}, {C},{D} and {E} must also be frequent. This is

said to be Monotonicity property of Apriori algorithm

(Buehrer et al., 2007).

Alternatively, if an item set is infrequent, then all

of its super sets must also be infrequent. Suppose {A,

B} is infrequent, then {A, B}, {A}, {B} are also

infrequent. This reduces the exponential search known

as support-based pruning (Buehrer et al., 2007). It also

filters the candidate item sets generated in the previous

iteration. This property is also known as anti-monotone

property of Apriori algorithm by Yanbin and Chia-Chu

(2006) and Sandhu et al. (2010).

The main objective of this study is to reduce the

number of frequent item sets. Therefore, in order to

improve the efficiency of Apriori algorithm and also

reduce the time complexity.

Frequent item set generation: Before beginning the
generation process, minimum support must be defined.
During the frequent item set generation phase, every
item in the data set is taken as candidate 1-item set
initially. After counting their supports, the candidate
item sets are discarded. Candidate 2-item sets are
generated in the next iteration by joining two candidate
1-item sets. Next database transactions are scanned and

Res. J. App. Sci. Eng. Technol., 10(11): 1281-1286, 2015

1282

the support count for each candidate 2-item set is
collected.

Care must be taken such that candidate 2-item sets
are generated with only frequent candidate 1-item sets.
This is because of the Apriori principle which defines
that “if an item set is frequent, then all of its sub sets
must also be frequent”. Agrawal et al. (1993) describes
the Set of frequent 2-item sets from the set of candidate
2-item sets are determined in the next step. This is done
by selecting those candidate 2-item sets that are having
minimum support.

Apriori property is used only from generating
candidate 3-item sets. In order to generate candidate 3-
item sets, two frequent candidate 2-item sets are joined
and resulting set is the candidate 3-item set. Pruning is
performed to reduce the size of candidate 3-item set by
Fang et al. (2009). It also helps us to avoid heavy
computation due to large candidate item set by Buehrer
et al. (2007).

The above procedure is repeated till the algorithm
generates empty candidate item sets i.e., having found
all the frequent items. In the next phase, these generated
frequent item sets are used to get strong association
rules. El-Hajj and Zaiane (2006) described the meaning
of strong association rules is that the rules that satisfy
both minimum support and minimum confidence.

METHODOLOGY

Generating association rules from frequent item
sets: For each frequent item set, generate all non-empty
sub sets of the frequent item sets. Calculate count of
item set divided by count of subsets. If this value is
greater than or equal to minimum confidence threshold
defined by the user, include the new rule else reject. For
example, let sc is the subset confidence, let (I1, I2,… Ik)
be the item set. Let ms be the minimum support. Let the

new rule R represented as R: I1
^
I2 ⇒ I5. The confidence

of rule R is calculated as:

},{

},,{
)(

21

521

IIsc

IIIsc
Rconfidence =

If the output value is greater than minimum

support, accept the rule else reject i.e.:

If confidence (R) ≥ms
 accept
else
 reject

Algorithm apriori:

Procedure Apriori (D, ms)

// D is the transactional database and ms is the
minimum support

k = 1

}})({/{ msNiIiiFk ×≥∧∈= σ

// To find all the frequent 1-item sets
 repeat
 k = k+1
 Ck = apriori_gen (Fk-1)
// To generate candidate item sets
for each transaction t in D do
// Increment the count of all candidates in Ck that are
contained in t
Ct = subset (Ck, t)
//Identify all candidates that belong to t
for each candidate item set belonging to Ct Do
 σ (c) = σ (c) +1
 // Increment support count
 end for
 end for

}})({/{ msNcCccF kk ×≥∧∈= σ

// To extract frequent k-item sets
 Until Fk = φ
 Return Uk Fk

The subset function which is described in the
above procedure determines all the candidate item sets
in Ck that are available in each database transaction.
The algorithm eliminates all candidate item sets whose
support count is less than minimum support (Li et al.,
2008). The algorithm stops when no more frequent item
sets are generated. Apriori algorithm is a level wise
algorithm since it traverses the item set lattice one level
at a time beginning from frequent 1-item sets to
frequent k-item sets, where k is the maximum size of
frequent item sets by Li et al. (2008). Moreover, it
adopts generate and test strategy since new candidate
item sets are generated from frequent item sets found in
the previous iteration.

Candidate item set generation and pruning: The
process of generating new candidate k-item sets from
frequent (k-1) item sets generated in the previous
iteration is said to be candidate item set generation
process. Pruning eliminates some of the candidate k-
item sets using support-based pruning strategy. The
effectiveness of the candidate item set generation
procedure is analyzed by the following features:

• The algorithm must not generate unnecessary
candidate item sets.

• It must generate complete candidate set, partial or
incomplete candidate item set are of no use for
generating association rules.

• There should not be any repetition in candidate
item set generation process. The process should be
unambiguous.

Support counting: It is the process of determining the
frequency of occurrence of a particular candidate item
set that is used in candidate pruning step. One way of
doing this is to compare each transaction against every
candidate item set and update support counts. Another

Res. J. App. Sci. Eng. Technol., 10(11): 1281-1286, 2015

1283

way to perform support counting is to calculate the item
sets contained in each transaction and update the
support counts of their respective candidate item sets by
Fakhrahmad et al. (2007).

For Apriori algorithm, support counting is
performed by using hash table. For this, candidate item
sets are partitioned into different buckets and stored in a
hash tree. Item sets that are contained in each
transaction are hashed according to their buckets.
Candidate item sets are matched with other candidate
item sets within the same bucket.

COMPUTATIONAL COMPLEXITY

The Apriori algorithm’s efficiency can be affected
by the following factors.

Low support value: Low support threshold values
often results more frequent data items. Since frequent
item sets increases, algorithm needs more passes over
the database resulting poor computational efficiency.

Dimensions of database: If the dimensionality of the
data increases, the computation and I/O costs will
increase.

Number of transaction: Efficiency of the Apriori
algorithm decreases with large number of transactions.
Average transaction width is also having impact on
Apriori algorithm efficiency. As average transaction
width increases, more candidate item sets must be
examined.

Limitations of apriori algorithm: Though Apriori
algorithm is clear and simple, it contains certain
drawbacks such as:

• Needs several iterations of the data

• It uses uniform minimum support threshold

• Difficult to find rarely occurring events

• Poor focus on partition and sampling strategies

The main disadvantage of Apriori algorithm is
wastage of time to hold a vast number of candidate item
sets by Liu et al. (2007). Apriori algorithm is inefficient
and slow when the memory capacity is limited and
transactions are numerous.

Improved apriori algorithm: There are so many ways
by which efficiency of the Apriori algorithm can be
enhanced. For counting item set, hash function can be
used because an item set whose corresponding hashing
bucket count is below the threshold cannot be frequent.
If frequent item sets are minimal, Apriori algorithm’s
efficiency increases by Ye and Chiang (2006). Kessl
and Tvrdk (2007) introduce a method by which
efficiency can be increased is by reducing number of
transactions. A database transaction is useless if it does
not contain any frequent k-item set.

To sum up, all the efficiency enhancing methods
for Apriori algorithm concentrate mainly on reducing
the number of frequent item sets. Therefore, in order to
improve the efficiency of Apriori algorithm, we must
reduce the time spent for searching frequent item sets
from the database.

Our improved Apriori algorithm works by
scanning all transactions to generate frequent item set.
The contents are items, corresponding support and their
transaction IDs in the database. Next, construct
candidate item set and identify the target transaction to
generate candidate item sets with minimum support.
Suppose T is a set of transactions such that T = {T1, T2,
T3 …. Tm} where m≥1. In each transaction, set of items
are defined as Ti = {I1, I2, ….. In} where n≥1. For an
item set, support count which is represented by σ, is the
frequency of occurrence of an item set in transactions.
Suppose Ck is the candidate item set of size k and Lk
represents frequent item set, then our improved Apriori
algorithm works as follows.

 First we scan all the Transactions (T) and generate
L1 containing items, support count and transaction IDs
where the items are found. Next we generate candidate

2-item sets C2, by joining L1×L1. Before performing
remaining scan, use L1 to get the transaction IDs of
those transactions which have minimum support count
between x and y. Here x and y are the items belonging
to candidate 2-item sets. Scanning is one in C2 for only
these specific transactions.

The above procedure is repeated for C3 i.e.,
candidate 3-item set with three items such as x, y and z.
These three items belongs to C3 and to get transaction
IDs of minimum support count between x, y and z, L1 is
used:

Improved_Apriori (T, I, minsupport, TID)
// Generate items, items support, their transaction ID
L1 = find_frequent_1_itemsets (T);
for (k = 2; Lk-1 ≠ φ; k++)
{
// Generate candidate item set Ck from Lk-1

 Ck = candidates generated from Lk-1;

 // is Cartesian product Lk-1×Lk-1 and eliminating

any k-1 size

// item set that is not frequent

x = get_item_min_sup (Ck, L1);

// Get the target transaction IDs that contain x
t = get_transaction_ID (x);

for (each transaction t in D) do
{
// Increment the count of all candidates in Ck that are
contained in t

Lk = candidates in Ck with min support;
} // end for
} // end for
return Uk Lk;

Rule generation: Once frequent item sets are
generated, efficient association rules are extracted from
this set. For each frequent k-item set, 2

k
-2 association

Res. J. App. Sci. Eng. Technol., 10(11): 1281-1286, 2015

1284

rules can be generated. From this, rules that have empty
antecedents or consequents can be ignored. Suppose if
we have a frequent k-item set Y, then the association
rules are generated by partitioning the item set Y into
two non-empty sub sets, X and Y-X. The rules that are

represented as φ ⇒ Y or Y ⇒ φ are ignored.
To generate association rules using Apriori

algorithm, level-wise approach is used. Here level
refers to the number of items belonging to the rule
consequent. All the high-confidence rules that have
only one item are extracted initially. Suppose if {a, c,

d} → {b} and {a, b, d} → {c}, then these two high-

confidence rules used to generate {a, d} → {b, c}
candidate rule simply by merging consequents of two
rules. Algorithm for generating association rules based
on Apriori method is given below:

 Rule Generation _Apriori
for each frequent k-item set fk k≥2 do

 H1 = {i | i ∈ fk}
// 1-item set consequents of the rule
 Call ap_gen_rules (fk, H1)
// calling function to generate association rules
 end for

The above procedure calls a function that generates
association rules and passes the rules to this function. In
the algorithm, we use minconf as the minimum
confidence threshold value described by the user. The
procedure which generates association rules are as
follows:

Procedure ap_gen_rules (fk, Hm)
K = |fk|
//size of the frequent item set
m = | Hm|
//size of the rule consequent
if k>m+1 do

 Hm+1 = Aprior_gen (Hm)

for each hm+1 ∈ Hm+1 do
conf = σ (fk) /σ (fk - hm+1)
if conf ≥ minconf then

// Checking for minimum confidence and selecting /
deleting the // rule based the value

output the rule (fk - hm+1) → hm+1

else
 delete hm+1 from Hm+1

end if
end for
call ap_gen_rules (fk, Hm+1)
end if

RESULT ANALYSIS

A large super market tracks the sales data for each

item. The stock keeping unit stores the information
which gives the details of items purchased together.
The transaction details are as in Table 1.

Table 1: The transactions

TID Items

T1 I1, I2, I5
T2 I2, I4
T3 I2, I4
T4 I1, I2, I4
T5 I1, I3
T6 I2, I3
T7 I1, I3
T8 I1, I2, I3, I5
T9 I1, I2, I3

Table 2: The candidate 1-itemset

Items Support

I1 6
I2 7
I3 5
I4 3

Table 3: Frequent 1-itemset

Items Support TIDs

I1 6 T1, T4, T5, T7, T8, T9
I2 7 T1, T2, T3, T4, T6, T8, T9
I3 5 T5, T6, T7, T8, T9
I4 3 T2, T3, T4

Table 4: Frequent 2-itemset

Items Support Min TIDs

I1, I2 4 I1 T1, T4, T5, T7, T8, T9
I1, I3 4 I3 T5, T6, T7, T8, T9
I1, I4 1 I4 T2, T3, T4
I2, I3 3 I3 T5, T6, T7, T8, T9
I2, I4 3 I4 T2, T3, T4
I3, I4 0 I4 T2, T3, T4

We can define minimum support as 3. To generate

all frequent 1-item set, we scan all transactions and we

select transaction IDs that contain these items. We also

eliminate the candidates that are in frequent/less than

minimum support. The candidate 1-item set generated

are as in Table 2.

Since the minimum support is 3, the item I5 is

removed from the candidate 1-item set. Next to

generate frequent 1-item sets, scan all the transactions

which contains items and their support count and the

transaction IDs that contains these items. In this step,

candidates that are infrequent or their support is less

than minimum support threshold are eliminated. Thus

the resulting frequent 1-item set is as in Table 3.
In order to generate candidate 2-item set from the

above frequent 1-item set, we have to group the item
with two items in each group and find the support for
all possible combinations of items. In our example, we
are using four items that are frequent are combined and
candidate 2-item set is generated (Table 4).

Now determine the transactions where we can find
the item set L1 instead of searching the whole database.
For example, (I1, I2), the original Apriori algorithm
will search all the 9 transactions. But in our improved
Apriori algorithm, we split the item set into I1 and I2
and find the minimum support. So we search for item
set (I1, I2) only in the transactions T1, T4, T5, T7 and
T9.

Since the item sets (I1, I4) and (I3, I4) is having
support level less than the minimum support value,

Res. J. App. Sci. Eng. Technol., 10(11): 1281-1286, 2015

1285

Table 5: Frequent 3-itemset

Items Support Min TIDs

I1, I2, I3 2 I3 T5, T6, T7

T8, T9
I1, I2, I4 1 I4 T2, T3, T4

I1, I3, I4 0 I4 T2, T3, T4

I2, I3, I4 0 I4 T2, T3, T4

Table 6: Number of transactions

Transaction set

Total scans

Traditional apriori Our improved apriori

T1 8.325 4.995

T2 13.500 8.100

T3 18.450 11.070
T4 35.400 21.240

T5 44.516 26.867

Table 7: Comparison of transactions in time

Transaction set

Time consumed (in sec)

--

Traditional apriori Our improved apriori

T1 2.867 1.874

T2 11.286 4.507

T3 13.608 5.851
T4 21.397 9.271

T5 29.568 12.714

Fig. 1: Representation of transactions and time

these two frequent item sets are deleted for further

processing.

The process is repeated for generating candidate 3-

item set and from that frequent 3-item set are generated.

The resultant frequent 3-item set are as in Table 5.

Since no more frequent item set generation is

possible, we can stop the algorithm and start generating

association rules.

Performance comparison: If we count the number of

database scans done by traditional Apriori algorithms

and improved Apriori algorithm, we observe that there

is a huge reduction in database scans in the proposed

method. Since frequent 1-item set generation is

common for the traditional Apriori algorithm and

improved Apriori algorithm, both the method needs the

same number of transactions. From frequent 2-item set

generation, our improved method outperforms the

traditional algorithm.
Total number of transactions needed for the

traditional Apriori algorithm is 143 and our improved
Apriori algorithm consumes only 89 transactions to
generated association rules. The efficiency of improved
Apriori algorithm is 63% higher than the traditional
method.

Next, comparison is done based on time consumed
by the original Apriori algorithm and the improved
version. For the above example, the traditional Apriori
algorithm consumed 1.486 sec to generate frequent item
sets whereas the improved versions consumed only
0.861 sec which is again less than 62% of time
consumed by traditional version.

We continued our experiment with five different
transaction sets namely T1, T2, T3, T4 and T5 consisting
of 555, 900, 1230, 2360 and 3000 transactions,
respectively. The experiment was conducted on both
traditional Apriori algorithm and improved Apriori
algorithm.
The overall performance is given in the Table 6.

In the table shown that improved Apriori algorithm
performs better than existing original Apriori algorithm.
Next we estimate the time consumed to generate
association rules by both the methods. The results are
shown in the Table 7.

All the above data are plotted in a graph. The time
consumed in improved Apriori in each group of
transactions is less than the traditional Apriori and the
difference increases more and more as the number of
transactions in a set increases (Fig. 1).

CONCLUSION

In this study, generating frequent patterns using
improved Apriori algorithm and support chaining is
presented which reduces the number of scans as well as
the time needed to generate efficient association rules.
Improved Apriori algorithm uses large item set
property, easy to implement, but it repeatedly scan the
database. Apriori takes more time to scan the large
Frequents patterns. Here the improvement is done in
generating candidate item sets and this reduces the
number of transactions to be scanned as well as the
time. Whenever the item set increases, the gap between
traditional and improved versions of Apriori algorithm
increases in terms of performance and time
consumption. This improved Apriori algorithm is faster
than the existing algorithm.

REFERENCES

Agrawal, R., T. Imielinski and A. Swami, 1993. Mining

association rules between sets of items in large

databasesm. Proceeding of the ACM SIGMOD

International Conference on Management of Data.

ACM Press, New York, pp: 207-216.

Res. J. App. Sci. Eng. Technol., 10(11): 1281-1286, 2015

1286

Buehrer, G., S. Parthasarathy, S. Tatikonda, T. Kurc

and J. Saltz, 2007. Toward terabyte pattern mining:

An architecture-conscious solution. Proceeding of

the 12th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming,

pp: 2-12.

El-Hajj, M. and O.R. Zaiane, 2006. Parallel leap:

Large-scale maximal pattern mining in a

distributed environment. Proceeding of the 12th

International Conference on Parallel and

Distributed Systems, pp: 128-136.

Fakhrahmad, S.M., M.H. Sadreddini and M.Z. Jahromi,

2007. Mining frequent itemsets in large data

warehouses. Proceeding of the 8th International

Conference on Intelligent Data Engineering and

Automated Learning, pp: 517-526.

Fang, W., M. Lu, X. Xiao, B. He and Q. Luo, 2009.

Frequent itemset mining on graphics processors.

Proceeding of the 5th International Workshop on

Data Management on New Hardware, pp: 97-105.

Kessl, R. and P. Tvrdk, 2007. Toward more parallel

frequent itemset mining algorithms. Proceeding of

the 19th IASTED International Conference on

Parallel and Distributed Computing and Systems,

pp: 317-328.

Li, H., Y. Wang, D. Zhang, M. Zhang and E.Y. Chang,
2008. Pfp: Parallel fp-growth for query
recommendation. Proceeding of the ACM
Conference on Recommender Systems, pp:
107-114.

Liu, L., E. Li, Y. Zhang and Z. Tang, 2007.
Optimization of frequent itemset mining on
multiple-core processor. Proceeding of the 33rd
International Conference on Very Large Data
Bases (VLDB, 2007), pp: 1275-1285.

Sandhu, P.S., D.S. Dhaliwal, S.N. Panda and A. Bisht,
2010. An improvement in apriori algorithm using
profit and quantity. Proceeding of the 2nd
International Conference on Computer and
Network Technology (ICCNT, 2010), pp: 3-7,
April 23-25.

Yanbin, Y. and C. Chia-Chu, 2006. A parallel apriori
algorithm for frequent itemsets mining. Proceeding
of the 4th International Conference on Software
Engineering Research, Management and
Applications, pp: 87-94, August 9-11.

Ye, Y. and C.C. Chiang, 2006. A parallel apriori

algorithm for frequent itemsets mining. Proceeding

of the 4th International Conference on Publication

Software Engineering Research, Management and

Applications, pp: 87-94.

