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Abstract: The Arab Spring which began on 17 December 2010 with the civil rebellions, revolutionary wave of 
demonstrations and protests in the Tunisia, Egypt, Libya, Yemen, Bahrain and Syria. The Arab Spring not only 
created a domino effect between Arabic countries but also it reflected a significant influence on the financial 
markets all over the world. The objective of this study is to analyze the impact of the Arab Spring in Turkey 
Financial Market in consideration of long memory. Long memory can be defined as the persistence of the 
unexpected shocks on the underlying has long lasting effects. Modeling long memory in stock returns and volatility 
has also attracted great deal of attention from finance literature recently. Existence of long memory is determined 
both for the returns and volatility of the time series by using different methods. Existence of long memory can be 
tested by Rescaled Range Statistics (R/S), Geweke and Porter-Hudak (GPH) Model and Gaussian Semi Parametric 
(GSP) Method. In consequence of these tests, if the stock returns have long memory affect then respectively 
Fractionally Integrated Autoregressive Moving Average Model (ARFIMA) and the Fractionally Integrated 
Generalized Autoregressive Conditional Heteroscedasticity (FIGARCH) model are used to detect the long memory 
in respectively return and volatility. In this study, the impact of the Arab Spring is investigated by modeled the long 
memory in Istanbul Stock Exchange using ISE 30 index prices in between December 17, 2010 and April 02, 2012. 
 
Keywords: ARFIMA, FIGARCH, GPH model, GSP method, long memory, R/S statistics 

 
INTRODUCTION 

 
The Arab Spring began on 18 December 2010 in 

Tunisia by Muhammed Bouzazi who set himself on fire 
(Ayhan, 2012), against unemployment, insufficient 
food source, inflation, political corruption, subjection of 
freedom of expression, irregularities and adverse living 
conditions in conjection with imposed repressive and 
authoritarian regime. The Arab Spring spreaded to other 
Arabic countries by generating the domino effect 
(Dogan, 2012). 

The domestic authority of Arab countries like 
Tunisia, Egypt, Syria, Bahrain, Algeria, Jordan (Barari, 
2012), Yemen, Mauritania, Saudi Arabia, Oman, Iraq, 
Lebanon and Fas tried to suppress the revolt by military 
power against to the civilians. Due to the World public 
opinion, NATO and United Nations organization are 
not unconcerned to civil war; they acted prudently and 
performed the operations (Dogan, 2012; Gülriz, 2012; 
Yılmaz, 2012). 

The domino effect of Arab Spring leaves an 
indelible impression not only the world public opinion 
and external media but also Turkish media and foreign 
politics of Turkey. Gülriz (2012) and Kibaroğlu (2011). 
Comments of the authorities about the foreign policy of 
the Turkey related to Arab Spring (Yılmaz, 2012) 

caused rebounds in Turkey Financial market 
(Kibaroğlu, 2011) in addition, it is observed that the 
market is adversely affected from the news related 
evolving revolution into civil war and rising mass 
murders towards civilians and affected positively fall of 
Egypt government and conciliatory gestures of the 
authorities and threatening behavior of the world public 
opinion to the Arabic authorities  

This study aims to investigate whether Turkish 
capital Market is affected by the political and 
diplomatic decisions and stances of Turkey that is 
Islamic government and neighbor to the some Islamic 
countries where is experienced the revolutions and civil 
war and as a part of Arab Spring and whether the 
effects continues long or short term. With in this 
context, ISE 30 index session data is used to determine 
whether the data contains the long memory effect by 
testing and construction model.  
 

METHODOLOGY 
 

There are many papers related to existence of the 
long memory on the financial dataset. Hiemstra (1997) 
concludes that there is some evidence consistent with 
persistent long memory in the returns of a small 
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proportion of stocks also long memory is not a 
widespread characteristic of stock market. There are 
some investigations which search long memory 
existence other economic indicators (Hwang, 2001) 
applied the asymmetric long memory (Fractionally 
Integrated Family Generalized Autoregressive 
Conditional Heteroskedasticity) FIFGARCH model to 
the exchange rate returns. Tang and Shieh (2005) 
applied FIGARCH and HYGARCH models to 
investigate long memory of stock index futures 
markets. 

Besides the many studies that examine long 
memory in stock returns, long memory in volatility has 
also attracted great deal of attention from finance 
literature. Christensen and Nielsen (2008) introduced 
FIEGARCH-in-mean model to avoid long memory 
property of volatility. Moreover, Kasman (2007) 
investigate the dual long memory property in the 
Turkish stock market and modeled long memory in the 
returns and volatility by using ARFIMA-FIGARCH. 
Kang and Yoon (2007), Liu (2000) and Korkmaz 
(2009) investigate the long memory in return and 
volatility for various financial markets. 

The long memory existence in the dataset is able to 
test by R/S statistics, Geweke and Porter-Hudak (GPH) 
Model and Gaussian Semi Parametric (GSP) Method. 
 
Rescaled Range (R/S) statistics: One of the oldest and 
best known methods to decide whether long memory 
exist or not is rescaled range (R/S) statistics which was 
introduced by Mandelbrot and Wallis (1969) and Hurst 
(1951). By using R/S statistics self-similarity parameter 
(H) which measures the intensity of long-range 
dependence in a time series can be calculated. 

Lo (1991) provides many references and a rigorous 
description of appropriate tests when the preferred 
alternative to randomness is long-term dependence. The 
range defined by a set of returns {y1, y2,…..yp}: 
 

M୮ ൌ ൥maxଵஸ୘ஸ୮ ෍ሺr y୲ െ yതሻ
୘

୲ୀଵ

൩ െ 

 

൥minଵஸ୘ஸ୮ ෍ሺy୲ െ yതሻ
୘

୲ୀଵ

൩ 

 
where, yത is the mean of set of returns {y1, y2,…..yp}. 
R/S-test statistics are ranges divided by scaled standard 
deviations:  
 

R
S ൌ

1
√nσ

M୮ 

 
Mandelbrot (1972) was defined test statistics as: 
σ ൌ s deϐines ሺR/Sሻ୑ୟ୬ and Lo (1991) defined test 
statistics as: 

σଶ ൌ sଶ ቎1 ൅ 2 ෍ ൬1 െ
j

q ൅ 1
൰

୯

୨

ρ఩෥቏ deϐines ሺR/Sሻ୐୭ 

 
with s2 the sample variance of returns. 

The null hypothesis of Mandelbrot is “there is no 
autocorrelation”. However, the null hypothesis of Lo is 
“there is no long-term dependence”. 
 
Geweke and Porter-Hudak (GPH) model: Geweke 
and Porter-Hudak (1983) proposed a semi-
nonparametric approach to testing long memory in 
terms of fractionally integrated process. Moreover, 
Geweke and Porter-Hudak (1983) used Fourier 
transformation and spectral density into the following 
formula: 
 

ln fሺw୧ሻ ൌ β െ d ln ቂ4sinଶ ቀ
w୨

2 ቁቃ ൅ e୨ 
 
for j = 1, 2,…, n୤ ሺTሻ. They used periodogram estimate 
of fሺw୧ሻ and least square to estimate dෘ  from the above 
function which is normally distributed in large samples. 
Then, the test statistics (t-statistics) defines as 
following: 
 

tୢୀ଴ ൌ dෘ ൭
πଶ

6 ∑ ሺU୨ െ Uഥሻଶ୬౜
୨ୀଵ

൱
ିଵ/ଶ

 

 
where,  
U୨ ൌ ln ሺ4sinଶ ቀ

୵ౠ

ଶ
ቁሻ  

Uഥ = The sample mean of U୨ for j = 1, 2,…, n୤ሺTሻ 
 
Null hypothesis of the GPH is “there is no long memory 
(d = 0)”.  
 
Gaussian Semi Parametric (GSP) method: Gaussian 
Semi Parametric estimation model which is introduced 
by Robinson and Henry (1999) is a generalization of 
Whittle approach. GSM which is based on the 
specification of the shape of the spectral density of the 
time series, usually applied for semi parametric data. 

Assume that yt is a stationary process with spectral 
density satisfying: 
 

fሺφሻ~Aφଵିଶ୆ 
 
as φ converges to 0 from the right side with AԖሺ0, ∞ሻ 
and BԖሺ0,1ሻ. G and H correspond to ஢మ஘ሺଵሻమ

ଶ஠׎ሺଵሻమ and 0.5 + d, 
respectively:  
 

GሺA, Bሻ ൌ
1
k ෍ ൥logAφ୧

ଵିଶ୆ ൅
φ୧

ିሺଵିଶ୆ሻ
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୩
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where, k<0.5 n also m is integer. 
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ARFIMA model: Granger and Joyeux (1980) and 
Hosking (1981) introduced the ARFIMA as a popular 
parametric approach to test the long memory property 
in the asset returns. Denoting L as the lag operator and 
replacing the difference operator (1-L) of an ARIMA 
process with the fractional difference operator (1-L)d 

where d denotes the degree of fractional integration. 
The ARFIMA (p, d, q) process can be expressed as: 
 

ΦሺLሻሺ1 െ Lሻனሺy୲ െ µሻ ൌ ΓሺLሻக౪ 
 
ε୲ ൌ z୲σ୲ , z୲~Nሺ0,1ሻ 

 
where,  
µ : The unconditional mean  
εt : Independently and identically distributed (i.i.d.) 

error term  
 
AR and MA lag polynomials with standing outside the 
unit root as follows:  
 

Φ (L) = 1 - Φ1L1 - Φ2L2 - … - ΦpLpve 
 

Γ (L) = 1 + γ1L + γ2L2 + … + γqLq 
 

The most important difference between ARIMA 
and ARFIMA model is the characteristics of the 
differencing parameter d which is defined an integer in 
ARIMA model and defined a range in ARFIMA model. 

The long range properties of series depend on the 
value of d. For d(0.5 ,0) א the autocorrelations are all 
positive. They decay hyperbolically to zero as the lag 
length increases, compared to the usual exponential 
decay  in  the  case  of  stationary  ARMA  model with 
ξ = 0. For d(0 ,0.5-) א, the series is said to exhibit 
intermediate memory. In this case the autocorrelations 
are all negative and decay hyperbolically to zero. For 
d(0.5 ,0.5-) א, the series is stationary and invertible. 
However, for d = 1, the series follows a unit root 
process. 
 
Fractionally Integrated GARCH (FIGARCH) 
model: Baillie (1996) introduced FIGARCH model as a 
popular parametric approach to test the long memory 
property in the volatility of financial return series. In 
contrast to an stationary time series in which shocks die 
out at an exponential rate, or a non-stationary time 
series in which there is no mean reversion, shocks to an 
I(d) time series with d(1 ,0) א decay at a very slow 
hyperbolic rate. The FIGARCH (p, d, q) model is given 
by: 
 

φሺLሻሺ1 െ Lሻୢε୲
ଶ ൌ α ൅ ሾ1 െ βሺLሻሿω୲ 

 
Conditional variance of ε୲ is: 
 

σ୲
ଶ ൌ

α
ሾ1 െ βሺ1ሻሿ ൅ γሺLሻε୲

ଶ 

where,  γሺLሻ ൌ γଵLଵ ൅ γଶLଶ … γ୩L୩ 
When 0<d<1, the coefficients capture the short 

term dynamics of volatility while fractional difference 
parameter d models the long term characteristics of 
volatility. 

FIGARCH model is the extension of IGARCH 
model in which shocks to the conditional variance are 
completely persistent and therefore the unconditional 
variance does not exist. In addition, when d = 0, 
FIGARCH process gives the same output with GARCH 
process and when d = 1, FIGARCH process gives the 
same output with IGARCH process.  
 
BBM estimation: BBM estimation method is proposed 
by Baillie et al. (1996) is to model persistent volatility 
and incorporate the idea of long memory fractional 
differencing into the GARCH (Generalized 
Autoregressive Conditional Heteroskedastic) model. 
FIGARCH (p, d, q) model by BBM is: 
 

φሺLሻሺ1 െ Lሻୢε୲
ଶ ൌ α ൅ ሾ1 ൅ βሺLሻሿv୲ 

 
where,  
φሺLሻ ൌ 1 െ ∑ φ୧

୮
୧ୀଵ L୧  

ሺLሻ ൌ ∑ β୧L୧୯
୧ୀଵ   

L = The lag operator 
 
Chung estimation: Chung estimation model is 
proposed by Chung (1999) with the aim of pointing up 
some little drawbacks in the BBM model. Chung 
constructed a slightly different process: 
 

φሺLሻሺ1 െ Lሻୢሺε୲
ଶ െ σଶሻ ൌ ሾ1 െ βሺLሻሿሺε୲

ଶ െ σ୲
ଶሻ 

 
where, the unconditional variance of ε୲ is σଶ. 
 

APPLICATION 
 

In application, session data of ISE 30 index in 
between 17 December 2010 and 02 April 2012 are 
used. Due to the trend in index values, the logarithms of 
index values are used in the analysis to remove the 
trend in the dataset. The descriptive statistics are 
reported in Table 1.  

According to the descriptive statistics and Jarque-
Bera (JB) normality test, data do not correspond with 
the normal distribution assumption and there are 
significant departures from normality. Moreover, time 
series are positively skewed and leptokurtic. In order to 
test the hypothesis of independence, Ljung-Box (Q) 
statistics is estimated for the time series and squared 
data which are presented in Table 2. From the test 
statistics, the null of white noise is rejected and assert 
that these logarithmic time series are autocorrelated. 

Before testing the long memory in logarithmic 
series and volatility, these series need to be stationary. 
The unit root tests are used for stochastic trends in the 
autoregressive representation of logarithmic series. The
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Table 1: The descriptive statistics 
Mean S.D. Min. Max. Skewness Kurtosis Jarque Bera Sample size
0.0099002 0.043021 -0.38696 0.69315 8.0271* 129.72* 466270* 655 
*: Denotes the statistic is significant at 1% level; JB test statistic has a chi-squared distribution with 2 degrees of freedom; S.D.: Standard 
deviation; Min.: Minimum; Max.: Maximum 
 
Table 2: Ljung-box (Q) statistics 

 Q statistics Probability  Qs statistics Probability 
Q (5) 381.268 0.0000 Q (5) 129.881 0.0000 
Q (10) 505.672 0.0000 Q (10) 132.299 0.0000 
Q (20) 603.276 0.0000 Q (20) 132.723 0.0000 
Q (50) 680.560 0.0000 Q (50) 132.755 0.0000 
p value denotes the probability value which indicates the significance at 1% level; Q (20) and Qs (20) are the Ljung-box statistic for returns and 
squared returns, respectively 
 
Table 3: The unit root tests 
KPSS test ADF test 
Test statistics 2.9139 Test statistics -17.4691
 1% 0.739   1% -2.56572
 5% 0.463   5% -1.94093
 10% 0.347   10% -1.61663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: ACF and PACF graphics of log price series 
 
KPSS and ADF tests are used to check whether the 
series are stationary or not. Table 3 reports the results 
of the KPSS and ADF tests for the logarithmic series. 

The KPSS test statistics indicate that data is 
significant to reject the null hypothesis of stationary, 
suggesting that it is non-stationary processes. In 
addition, the ADF test statistics reveal that the data is 
stationary since it rejects the null hypothesis. Usually 
these tests give the same solution for financial time 
series, however, for the data which is affected from the 
external factors like electricity prices, as mentioned in 
many research papers these tests may also give the 
adverse solutions since the effects of the long memory. 
Kuswanto and Salamah (2009) applied regime 
switching long memory model to German Stock 
Returns, they mentioned in their study that, KPSS test 
tends fail to reject the alternative of unit root process, 
when the real process is long memory. Moreover, Lee 
and Schmidt (1996) showed that other unit root test 

should be applied to the data which contains long 
memory. In the Fig. 1, the ACF and PACF graphs of 
the logarithmic data are presented. 

Test statistics of Hurst-Mandelbrot R/S, Lo R/S, 
GPH and GSP which is used to confirm the existence of 
the long memory effect on the dataset are presented in 
the Table 4. 

In 99% critical interval, the null hypothesis for 
Hurst-Mandelbrot R/S and Lo R/S statistics are 
rejected. So this is a fact that the log values exhibits the 
long memory effects. In addition, due to the d 
parameter is contained from (0, 0.5) interval and it is 
statistically significant, this shows that the generated 
series have the long memory effect. ARFIMA model is 
used to analyze the long memory in time series. In the 
Table 5 the estimation results of ARFIMA (p, d, q) 
model are presented for different p, d, q values. 

In the Table 5, different specifications of the 
ARFIMA (p, d, q) with (p, q) Ԗ (0, 1, 2) are estimated 
by using maximum likelihood method. Since, d-
ARFIMA coefficient is stationary, invertible and also 
statistically significant in 99% confidence interval for 
all estimated models, the generated series contains long 
memory. All of the ARFIMA models reveal that they 
do not correspond with the normal distribution 
assumption since the Jarque-Bera (JB) statistics shows 
significant departures from normality. In ARFIMA (1, 
d, 1) is exhibited intermediate memory. Autocorrelation 
is negative and decay hyperbolically to zero, since dԖ 
(0, 0.5). In ARFIMA (2, d, 1), ARFIMA (1, d, 2) and 
ARFIMA (3, d, 1) models, autocorrelation is positive 
and decay hyperbolically to zero as the lag length 
increases since dԖ (0, 0.5). The best performed 
ARFIMA (p, d, q) model is determined considering 
minimum AIC, significant AR and MA coefficients and 
maximum log likelihood value. As a result of that, 
ARFIMA (1, d, 2) model is the best performed model. 

Portmanteau tests goodness of fit the model 
especially for ARIMA models. As seen in the Table 5, 
Portmantetau test statistic is significant for all ARFIMA 
test in 99% confidence interval. Due to the fact that, the 
autocorrelation coefficients up to lag 25 are different 
from zero. 

When Residual Sum of Squares (RSS) which is a 
measure of the discrepancy between the data and

1.0

0.5

0 5 10 15 20

Autocorrelation 

1.0

0.5
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Partial autocorrelation 
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Table 4: Long memory tests 
 Hurst-mandelbrot R/S Lo R/S GPH GSP 

d parameter - - 0.388047 (0.0407224) 0.268399 (0.0276501)
Test statistics 3.28996 2.78836 - - 
Table values 
90% 
95% 
99% 

Table values 
[0.861, 1.747] 
[0.809, 1.862] 
[0.721, 2.098] 

 Probability 
[0.0000] 

Probability  
[0.0000] 

 
Table 5: Estimated ARFIMA models 
 ARFIMA (1, d, 1) ARFIMA (2, d, 1) ARFIMA (1, d, 2) ARFIMA (3, d, 1)
d-ARFIMA 0.496552* 

(0.004851) 
0.299367* 
(0.08498) 

0.479669* 
(0.02778) 

0.449910* 
(0.05984) 

AR (1) -0.453208* 
(0.09839) 

0.560492* 
(0.04840) 

0.994019* 
(0.005743) 

0.318621* 
(0.05778) 

AR (2) - 0.434247* 
(0.04768) 

- 0.405632* 
(0.04062) 

AR (3) - - - 0.266278* 
(0.05163) 

MA (1) 0.183726 
(0.1077)*** 

-0.665399* 
(0.06683) 

-1.39377* 
(0.04928) 

-0.624819* 
(0.06296) 

MA (2) - - 0.663269* 
(0.04151) 

- 

Constant 0.0333287 
(0.1785) 

0.321737 
(0.5045) 

0.679364 
(3.263) 

0.507874 
(1.556) 

AIC -3.96746756 -4.11478703 -4.18609685 -4.14361016 
AIC.T -2598.69125 -2695.1855 -2741.89344 -2714.06465 
Portmanteau (25) 341.59* 28.190 65.118* 20.610 
ARCH (1) 224.98* 279.43* 314.71* 304.98* 
RSS 0.0607746 0.0560575 0.0407271 0.0490587 
Mean -0.0077469 -0.0015009 -0.00046943 -0.00081267 
Std 0.031969 0.030444 0.029300 0.029930 
Skewness 0.78978 -0.32764 -0.57917 -0.87868 
Excess kurtosis 118.41 140.51 123.30 135.24 
Asymptotic test 382690* 538830* 414970 499210 
Normality test 9172.5* 10366* 9399.5* 10426* 
Log likelihood  1304.34562 1353.59275 1376.94672 1364.03233 
Maximum likelihood estimated standard errors are reported in the parentheses below corresponding parameter estimates. The ARCH (1) denotes 
the ARCH test statistic with lag 1; The mean, standard deviation, skewness and kurtosis are also based on standardized residuals; *: Denotes 
significance levels at the 1% 
 
estimated models, decreases, fitting of the model 
increases. The smallest RSS is shown in the output of 
ARFIMA (1, d, 2). 

The standardized residuals display skewness and 
excess kurtosis. Furthermore, the relatively large value 
of kurtosis statistics implies that the residuals appear 
tobe leptokurtic, or fat-tailed and sharply peaked about 
the mean when compared with the normal distribution.  

ARCH LM (1, 1) test statistics of the generated 
time series are significant in 99% confidence interval 
for all ARFIMA models in the Table 5. So, there is 
ARCH effect in the standardized residuals, which 
indicates that there is also conditional 
heteroscedasticity. Moreover, asymptotic test is another 
measure of heteroscedasticity. According to its 
statistics, in 99% confidence interval the null 
hypothesis which is the series has homoscedasticity, is 
rejected. In the purpose of obtaining homoscedasticity, 
GARCH models estimation is required. 

Estimated models with different orders with 
skewed t distribution are compared in the Table 6. d-
ARFIMA and d-FIGARCH coefficients are statistically 
significant in 99% confidence interval for all models, 
which implies the existence of long memory in both 
transformed electricity prices and its variances.  

GARCH (β1) and GARCH (β2) coefficients are 
statistically significant and low, which indicates that a 
weak autoregressive component in the conditional 
variance process.  

The skewed student-t distribution is found to 
outperform the normal distribution and student t 
distribution since the t-statistics of the parameter 
Student DF is significant in 99% confidence interval for 
both BBM and Chung estimation methods. Moreover, 
the asymmetric parameters Asymmetry are insignificant 
and are not different from zero for both BBM and 
Chung estimation methods. This suggests that 
ARFIMA-FIGARCH models the densities of generated 
log electricity price series are not skewed. Furthermore, 
the higher values of Pearson (50) test statistics 
reconfirm the lack of skewed Student-t distribution for 
both BBM and Chung estimation methods.  

AIC, SW, SB, H-Quinn and Q statistics are the 
vital statistics which indicate the best performed model. 
In between ARFIMA-FIGARCH models with different 
estimation methods and distributions, ARFIMA (1, 1, 
2) -FIGARCH (1, 0.999861, 1) which is estimated by 
using Chung method is found the outperformed model 
since it has minimum AIC, SW, SB, H-Quinn criteria 
and significant Q (50) statistics. 
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Table 6: Constructed ARFIMA-FIGARCH models 
 ARFIMA (1, d, 2) 

FIGARCH (2, d, 1) 
ARFIMA (1 ,d, 2) 
FIGARCH (1, d, 1) 

ARFIMA (2, d, 1) 
FIGARCH (1, d, 1)  

ARFIMA (3, d, 1) 
FIGARCH (1, d, 2) 

Estimation method CHUNG CHUNG BBM BBM 
Cst (M) -0.059063*  

(0.00053447) 
0.002827  
(0.0014291) 

0.017948 
(0.010222) 

-0.110697* 
(5.8444e-007) 

d-ARFIMA -0.928379* 
(0.0010794) 

1.000000*  
(0.00049) 

0.595887*    
(0.016112) 

0.410714* 
(4.1260e-005) 

AR (1) 0.561226 
(0.0012950) 

0.614928* 
(0.0288) 

0.108025*    
(0.010266) 

0.006529* 
(3.9699e-005) 

AR (2) - - 0.467686* 
(0.033544) 

0.353726*  
(0.0010325) 

AR (3) - - - 0.328624*  
(0.0010649) 

MA (1) 0.317972* 
(0.0029988) 

0.440192* 
(0.1191) 

-0.523985*   
(0.0011717) 

0.369810* 
(2.9293e-006) 

MA (2) 0.284492* 
(1.4842e-005) 

0.435341* 
(0.0342) 

- - 

Cst (V) 0.100545* 
(0.0033124) 

0.003685 
(0.046922) 

0.016618*  
(0.00095456) 

0.020489* 
(9.9508e-005) 

d-FIGARCH 0.994354* 
(0.00031454) 

0.999861* 
(2.3189e-006) 

0.897927*   
(0.0037428) 

0.713851* 
(1.9214e-005) 

ARCH (1) 0.835621* 
(3.6872e-005) 

0.576784* 
(0.10602) 

0.841368* 
(2.3099e-005) 

0.309584* 
(1.7182e-005) 

ARCH (2) - - - 0.258739* 
(2.7280e-005) 

GARCH (β1) 0.297792* 
(2.9746e-005) 

0.574380* 
(0.10278) 

0.070083** 
(0.034200) 

0.477490* 
(2.5667e-005) 

GARCH (β2) 0.143732* 
(5.2986e-005) 

- - - 

Asymmetry -2.082346* 
(0.21774) 

0.702295* 
(0.083834) 

1.809298* 
(0.16169) 

-10.185545*      
(1.4675) 

Tail 2.059749* 
(0.0016633) 

2.644286* 
(0.15939) 

2.704587* 
(0.10080) 

4.054256* 
(6.5343e-005) 

Mean 0.00990 0.00990 0.00990 0.00990 
Variance 0.00185 0.00185 0.00185 0.00185 
Skewness 8.02712 8.02712 8.02712 8.02712 
Kurtosis 132.71925 132.71925 132.71925 132.71925 
Log-likelihood 5985.59 6787.144 3453.08 3117.78 
AIC -18.239975 -20.690516 -10.510183 -9.480233 
SW -18.157813 -20.691068 -10.434868 -9.391225 
SB -18.240630 -20.615201 -10.510735 -9.48100 
H-quinn -18.208117 -20.661313 -10.480980 -9.445721 
JB 9.4839e+006 1.0961e+007 5.8301e+006 1.1324e+007 
Pearson (50) 684.0076* 1288.8931* 1608.1298* 5751.3359* 
Standard errors are reported in the parentheses below corresponding parameter estimates; P (50) is the Pearson goodness-of-fit statistic for 50 
cells; The Q (50) and Qs (50) are the Ljung-box test statistics with 50 degrees of freedom based on the standardized residuals and squared 
residuals, respectively; *: Indicate significance levels at 1%  
 

CONCLUSION 
 

In this study, effect of the Arab Spring on the ISE 
30 session returns is investigated in between 17 
December 2010 and 02 April 2012.  

Foreign policy, precautions, cross-border 
operations, international reliefs of Turkey related to 
Arab Spring reflected to Turkey financial market that 
can be interpreted from the financial market response. 
The main purpose of this study is to investigate 
persistence of the unexpected shocks on the Turkey 
financial market and long lasting effects of Arab 
Spring. In application, the presence of long memory in 
ISE 30 returns is tested and the best fitted model is 
constructed which is ARFIMA (1, 1, 2) -FIGARCH (1, 
0.999861, 1) by using Chung model with student t 
distribution. Eventually, presence of long memory 
shows that Turkey financial market does not 
immediately respond to  Arab  Spring,  but  reacts  to  it 

gradually over time. The means of constructed model is 
statistically significant implies that the effects of the 
any shock on the ISE 30 returns and volatility are 
persistent and vanish very slowly into the long term. 
This is a great change to forecast the ISE 30 returns for 
the short run. Hence, the possibility of consistent 
speculative profits may arise because of the presence of 
long memory in ISE 30 returns, contradicting the weak 
form market efficiency hypothesis, which states that 
past returns cannot predict future returns.  
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