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Abstract: Since Electro Encephalo Graphic (EEG) signal is considered chaotic, Nonlinear Dynamics and 
Deterministic Chaos theory may supply effective descriptors of the dynamics and underlying chaos in the brain. The 
EEG signals are highly subjective and the information about the various states may appear at random in the time 
scale. Therefore, EEG signal parameters, extracted and analyzed using computers, are highly useful. This study was 
undertaken to evaluate the linear and nonlinear parameters such as Approximate Entropy (ApEn), Correlation 
Dimension (D2), Pearson Autocorrelation, Bi-correlation, Hurst exponent and phase space plots from the EEG 
signals under different cognitive states. 
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INTRODUCTION 

 
Many interesting phenomena in nature is due to the 

presence of nonlinearity. The theory of nonlinear 
dynamical systems, also called 'chaos theory', has now 
progressed to a stage, where it is possible to study self-
organization and pattern formation in the complex 
neuronal networks of the brain. According to Stephen 
(1994), chaos theory is “the qualitative study of 
unstable aperiodic behavior in deterministic dynamical 
systems”. 

The brain is a highly complex and vital organ of a 
human body whose neurons interact with the local as 
well as the remote ones in a very complicated way. 
These interactions evolve as the spatio-temporal 
electro-magnetic field of the brain and are recorded as 
Electroenc Ephalo Gram (EEG). It has been established 
that EEG recordings exhibit chaotic behavior from 
experiments such as the EEG models proposed by 
Skarda and Freeman (1987) and Wright and Liley 
(1996) for chaotic dynamics to meet requirements in 
neurobiology. EEG data are very important for many 
branches of the neurosciences and, many sophisticated 
experiments in cognitive science have shown that EEG 
and evoked potentials are strongly correlated with 
specific cognitive tasks. Many pathologic states have 
been examined as well, ranging from toxic states, 
seizures (Pijn et al., 1997) and psychiatric disorders to 
Alzheimer's (Jaeseung et al., 2001), Parkinson's and 
Creutzfeldt-Jakob's disease. Computer-assisted EEG 
signal analysis increased the desire for effective 
quantitative interpretation of EEG data and of 
describing properties of the EEG which often cannot be 

perceived by human eye. The aim of this study is to 
study the relation of the nonlinear characteristics of 
EEG signals with the intelligence activity of the human 
brain under various mental conditions (Molle et al., 
1999; Wang et al., 2010). 

Today's cognitive psychology (McCarthy and 
Warrington, 1990) differs from classical approaches in 
the methods they use as well as in the interdisciplinary 
connections to other sciences. Apart from rejecting 
introspection as a valid method to analyze mental 
processes, cognitive psychology introduces computer-
based techniques that had not been in the range of 
methods used by classical psychology so far. The 
realization that there are important links between brain 
activity and cognitive functions is the key assumption 
for present and future research. Complete psychological 
accounts of cognitive functioning require 
considerations of the computational level, algorithmic 
level and the brain levels, about how the representation 
and the algorithm be realized physically. EEG has 
many advantages in measuring brain activity including 
the convenience and low cost. However, it is very 
difficult to estimate cognitive or mental state from EEG 
signals for a number of reasons. Nonlinear dynamics 
theory opens new window for understanding behavior 
of EEG (Korn and Faure, 2003; Ulbikas and Cenys, 
1994). The literature on the study of the application of 
the nonlinear dynamics theory to analyze physiological 
signals shows that nonlinear approaches were used for 
analysis of renal blood flow, arterial pressure, EEG and 
respiratory signals, heart rate and nerve activity (Hoyer 
et al., 1997; Stein et al., 1992). Lindenberg (1996) 
points out that the nonlinear characteristic of the 
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physiological EEG signals greatly differs from that of 
the pathology; when clear-headed, the brain has higher 
chaotic degree, processes information more quickly and 
can make more responses. 

Ferri et al. (2002) in this study the author 

introduced Phenomenological model for consciousness 

and selfhood which relates time, awareness, and 

emotion within one framework. The consciousness state 

space (CSS) model is a theoretical one. Pincus (2001) 

Cognitive-processing bias in chronic pain, a review and 

integration, it helps for patients with chronic pain 

selectively process pain- and illness-related stimuli. The 

evidence with regard to attention, interpretation, and 

recall biases is critically reviewed. Theiler (1987) the 

author dealt about two different signal properties and its 

nonlinear dynamics and self-organization of brain and 

behavior of EEG and MEG signals. Bruce J. West dealt 

about fractal physiology and chaos in medicine, in that 

mathematical modeling for physiological systems 

(West, 2013). 

 

MATERIALS AND METHODS 

 

In this study five cognitive tasks such as relaxation 

or baseline task, mental arithmetic multiplication task, 

3d figure rotation task, letter composition task, visual 

counting task were administered to 4 healthy subjects 

with no history of neurological disorders from an age 

group of 22-45. Data were collected from 254 scalp, 

neck, face and eye locations using the Bio Semi Active 

Two system. The 10-20 system for EEG electrode 

placement in Fig. 1. 

An experiment paradigm was designed for the 

study   and    the    protocol    was   explained   to all the  

participants before conducting the experiment. The 

subject was asked to comfortably lie down with eyes 

closed and the electrode cap was placed. The subject 

was instructed to remain as relaxed as possible without 

thinking anything for 2 min. After assuring the normal 

relaxed state by checking the alpha waves, the EEG was  

recorded for 50 sec, collecting five sessions of 10sec 

epochs each for the relaxed state. This was used as the 

baseline reference for further analysis of other tasks. 

Then the subject was asked to perform a mental task on 

presentation of an audio cue. Five sessions of 10 sec 

epochs for each mental task were recorded, each with a 

time gap of 5 min. The whole experiment lasted for 

about one hour including electrode placement. The 

same procedure was repeated for all the subjects for 

several days. The EEG signal waveforms of a subject 

performing the cognitive tasks are shown in Fig. 2. 

 

 
 

Fig. 1: International 10-20 system for positioning electrodes 

 

 
 

Fig. 2: EEG signal waveforms of a subject for all cognitive tasks in the order: visualization of numbers, mental arithmetic, 

resting, letter composition and figure rotation 
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FEATURE EXTRACTION FOR LINEAR AND 

NONLINEAR ANALYSIS 

 

Approximate entropy: Approximate entropy (ApEn) is 

defined as the “logarithmic likelihood that runs of 

patterns of data that are close to each other will remain 

close on next incremental comparisons”.ApEn is a 

statistical metric that quantifies the complexity or 

irregularity of signals both deterministic and stochastic 

(Flores Vega et al., 2013). It reflects the rate of new 

pattern generation and is thus related to the concept of 

entropy. This method was first proposed by Pincus 

(1991). One of the main advantages of ApEn is that it is 

very useful for short datasets that may be polluted by 

noise and interference because it is not sensitive to 

them. ApEn has two user-specified parameters: a run 

length m and tolerance window r small values of ApEn 

imply a greater likelihood that certain patterns of 

measurements will be followed by similar 

measurements. If the time-series is highly irregular, the 

occurrence of similar patterns in the future is less likely. 

The algorithm is as follows:  

 

1) Form a � vector ��1�, … , ��� − � + 1� define 

by ���� = [����, ���� + 1�, … , ��� + � − 1�] 
where the original data are {��1�, ��2�, … , ����} 

and � is the total number of data points. 

2) Set the distance between ���� and ���� by �[����, ����], define as the maximum absolute 
difference between their respective scalar elements, �[����, ����] = max |��� + �� − ��� + ��|, for � = 0~� − 1 

3) For ����, find the number of j�� = 1, … , � − � +1,�≠� so that ���,��≤�, denoted as ���. Then, for � = 1, … , � − � + 1, � !"#��� = $%�&�$ − � + 1 

4) For each � !��� compute the natural algorithm and 

average it over �: 
 

∅!��� = 1� − � + 1 ( ln �&!
$+!"#

&,#
��� 

 

5) Increase the dimension to � + 1, repeat steps 1 to 

4 and find � !"#���, ∅!"#��� 

6) The number of data point N is finite and the 

approximate entropy is defined when the data 

length is N and it is denoted as -./0��, �, �� =∅!��� − ∅!"#���. 
 
Although m and r are critical in determining the 

outcome of ApEn, no guidelines exist for optimizing 
their values. In principle, the accuracy and confidence 
of the entropy estimate improve as the number of 
matches of length m and m+1 increases. The number of 
matches can be increased by choosing small m (short 
templates) and large r (wide tolerance). However, there 

are consequences for criteria that are too relaxed 
(Pincus, 1991). For smaller r values, one usually 
achieves poor conditional probability estimates, while 
for larger r values, too much detailed system 
information is lost. To avoid a significant contribution 
of noise in an ApEn calculation, one must choose r 
larger than most of the noise (Pincus, 1991). It is 
possible to automatically select the appropriate 
tolerance threshold value r, which corresponds to the 
maximum ApEn value, without resorting to the 
calculation of ApEn for each of the threshold values 
selected in the range of zero and one times the standard 
deviation (Chon et al., 2009; Lu et al., 2008). 
Furthermore, as m decreases underlying physical 
processes that are not optimally apparent at smaller 
values of m may be obscured (Lake et al., 2002). 

For this study, m is set to 2 and r is set to 15% of 

the standard deviation of each time series. These values 

are selected on the basis of previous studies indicating 

good statistical validity for ApEn within these variable 

ranges (Pincus and Goldberger, 1994). 
 
Correlation dimension: Correlation dimension (D2) 
describes the dimensionality of the underlying process 
in relation to its geometrical reconstruction in phase 
space. It is used for detecting chaotic behavior in 
dynamical systems (Sprott and Rowlands, 2001).Since 
in principle D2 converges to finite values for 
deterministic systems and does not converge in the case 
of a random signal, D2 is a good parameter for 
evaluating the deterministic or noisy inherent nature of 
a system. 

Grassberger and Procaccia (1983) algorithm (GPA) 

computes correlation dimension based on the following 

approximation: The probability that two points of the 

set are in the same cell of size r is approximately equal 

to the probability that two points of the set are separated 

by a distance ρ less than or equal to r. Thus C(r) is 

approximately given by: 
 

���� ≈ 2 H�� − 4��5&,�56$&,# 67# ��12 ��� − 1�  
 

where, N is the number of data points and the Heaviside 
function H is defined as: 
 

8�9� = :1 ;<� 9 > 0,0 ;<� 9 ≤ 0.@ 
 
The most common metric employed to measure the 

distance ρ is the Euclidean metric: 
 

4A�5& , �56B = C( D�5&��� − �56���EF!
G,#  

 
The choice of metric should not affect the scaling 

of the Correlation sum with r. 
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Theiler (1986) made a correction to this method in 
order to avoid spurious temporal correlations. He 
proposed that the vectors to be compared when 
calculating the correlation integral, should be distanced 
at least W data points (|i-j|> W), where W is a measure 
of first minimum of mutual information i.e., delay T. 

For small r, C(r) behaves as according to a power 
law: 
 ����~�HI  
 

If number of data and embedding dimensions are 
sufficiently large we obtain: 

 

JF = � log ����� log �  

 
Then Correlation Dimension (D2) is given by the 

slope of the log-log plot of C(r) versus r. Its numerical 
value describes the coherence of the underlying 
dynamics-the more coherent the system, the smaller the 
value of D2. The graph of log C(r) versus log rhas a 
linear region called the scaling region. The GPA 
assumes that most of the information about the 
dimension is contained in the scaling region 
(Babloyantz et al., 1985). 

The selection of an appropriate time lag and 
embedding dimension for phase space reconstruction is 
important (Liebert and Schuster, 1989). In this study, 
the delay time T is determined by Mutual Information 
(MI) method (Fraser and Swinney, 1986) (by finding 
the place where MI first attains a minimum) and the 
embedding dimension is estimated by the False Nearest 
Neighbors method proposed by Kennel et al. (1992). In 
this study, Correlation dimension of EEG is calculated 
while r is fixed to 4. 
 
Pearson autocorrelation: Pearson Autocorrelation is a 
basic tool of linear analysis and statistical description 
(Box et al., 1994) that gives information on the 
correlations in time present in the signal. It is the 
standard autocorrelation for the given range of delays. 
The delay t can be an array of positive integers or a 
single integer. 

In addition the Cumulative Pearson 
Autocorrelation is computed for the same range of 
delays. Also, if the autocorrelation for delays up to the 
maximum given delay crosses the 1/e or zero level the 
delay of de-correlation or zero-autocorrelation, 
respectively, is assigned a value. The cumulative 
Pearson autocorrelation and the delay of de-correlation 
and zero autocorrelation can then be simply assigned to 
the respective measures if these are selected with the 
same set of delay values. 

 

Bicorrelation: The bi-correlation, of three point 

autocorrelation (Kugiumtzis, 2001; Schreiber and 

Schmitz, 1997), or higher order correlation, is the joint 

moment of three variables formed from the time series 

and two delays t and s. A simplified scenario for the 

delays is implemented, s = 2t, so the bi-correlation is 

E[x(i), x(i+t), x(i+2t)], where the mean value is 

estimated by the sample average. In this way, the Bi-

correlation is a function of a single delay t. Bi-

correlation is the extension of the standard Pearson 

autocorrelation to three variables and it is computed for 

the given range of the delay t. The Bi-correlation is not 

a widely discussed measure, but the cumulative bi-

correlation has been used as a statistic for the test of 

linearity (or non-linearity as it is best known in the 

dynamical systems approach of time series analysis), 

the so-called Hinich (1996). 

Cumulative Bi-correlation is the cumulative 

function of the bi-correlation for the given range of 

delays. The Cumulative Bi-correlation for each 

delay t is the sum of the absolute values of the Bi-

correlation up to the delay t. 

 

Hurst exponent: The Hurst exponent is a measure that 

has been widely used to evaluate the self-similarity and 

correlation properties of fractional Brownian noise, the 

time-series produced by a fractional (fractal) Gaussian 

process. It is used to evaluate the presence or absence 

of long range dependence and its degree in a time 

series. The Hurst exponent is the measure of the 

smoothness of a fractal time series based on the 

asymptotic behavior of the rescaled range of the 

process. However, non -stationaries are often present in 

physiological data and may compromise the ability of 

some methods to measure self -similarity. Hurst 

Exponent is used by Dangel et al. (1999) to characterize 

the non-stationary behavior of the sleep EEG episodes. 

The Hurst exponent H is defined as: 
 

8 = log �MN�log �O� 

 

where, T is the duration of the sample of data and R/S 

the corresponding value of rescaled range. The above 

expression is obtained from the Hurst’s generalized 

equation of time series that is also valid for Brownian 

motion. A Hurst exponent, H, between 0 to 0.5 is said 

to correspond to a mean reverting process (anti-

persistent), H = 0.5 corresponds to Geometric Brownian 

Motion (Random Walk), while H> = 0.5 corresponds to 

a process which is trending (persistent). H is related to 

the fractal dimension D given by: H = E+1-D (3) where 

E is the Euclidean dimension. 

 

Phase space plot: Any chaotic system is described by 

strange attractors in the phase space. In this approach, a 

phase space plot is obtained with the Y-axis 

representing the EEG signal x(t) and the X-axis 

representing the EEG signal after a delay x(t+ T). The 

choice of an appropriate delay T is calculate during the 



 

 

Asian J. Med. Sci., 7(4): 41-49, 2015 

 

45 

minimal mutual information technique (Fraser and 

Swinney, 1986). 

If τ is undersize, the track of the phase space will 

approach to a straight line; on the contrary if τ is 

oversize, the data point will centralize in a small range 

of the phase space and we can't get the attractors' local 

structures from the reconstructed phase graph. It has 

been observed that the patterns are unique to the 

various mental states. 

This kind of analysis gives first time evidence that 

though the EEG time series look similar in all the 

channels, different dynamics may be occurring in 

different areas of the brain. 

 

RESULTS AND DISCUSSION 

 

In this study, the Nonlinear and linear measures 

such as Approximate Entropy, Correlation Dimension, 

Pearson Autocorrelation, Bi-correlation, Hurst exponent 

and phase space plots are applied to the EEG signals of 

4 subjects performing cognitive tasks like Resting or 

Relaxation (T1), Figure Rotation (T2), Letter 

Composition (T3), Arithmetic (T4) and Visual 

Counting (T5), respectively. The tabular and graphical 

representations of the results are given as follows: 

ApEn is the measure of dynamic changes of the 

EEG signal in time domain. A decrease in entropy 

indicates high predictability and a reduced stochastic 

behavior. A time series containing many repetitive 

patterns has a relatively small ApEn, a less predictable 

process has a higher ApEn. Theoretically, a perfectly 

repeatable time series has an ApEn ~0 and a perfectly 

random time series has an ApEn ~2 (Yentes et al., 

2012). 

From Table 1 and Fig. 3, we can see that 

performing activities such as mental arithmetic (T4) 

and visualizing numbers (T5) which require less 

consciousness have a weaker ability to form a new 

pattern and are similar on incremental comparison 

when compared to the activities with more 

consciousness such as 3d figure rotation (T2) and letter 

writing (T3). These have a stronger ability to form a 

new pattern and hence the time series is less predictable 

and more complex. 

This also corresponds to practice. Since arithmetic 

computation is according to a fixed rule, its ability to 

form a new pattern in the future is naturally less.  

Correlation dimension is a sensitive parameter in 

the analysis of electrical brain activity (Lamberts et al., 

2000). The technique can be used to distinguish 

between (deterministic) chaotic and truly random 

behavior. It quantifies the variability in a time series. 

As can be inferred from Table 2 and Fig. 4, there 

are slight differences in the correlation dimension of the 

subjects between the tasks. Nevertheless the table 

indicates that the letter composition activity (T3) is 

consistently higher despite the relatively small changes. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: Graphical representation of approximate entropy for 

various cognitive tasks performed by subjects 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Graphical representation of correlation dimension for 

various cognitive tasks performed by subjects 
 
Table 1: Result of approximate entropy for various cognitive tasks 

performed by subjects 

ApEn T1 T2 T3 T4 T5 

S1 0.215 0.201 0.201 0.201 0.319 
S2 0.482 0.451 0.451 0.451 0.451 
S3 0.083 0.077 0.231 0.077 0.077 
S4 0.220 0.231 0.231 0.231 0.231 

 
Table 2: Result of correlation dimension for various cognitive tasks 

performed by subjects 

Correlation 
dimension T1 T2 T3 T4 T5 

S1 0.73 0.758 0.781 0.758 0.718 
S2 0.736 0.719 0.777 0.752 0.725 
S3 0.789 0.769 0.982 0.769 0.774 
S4 0.785 0.717 1.100 0.718 0.936 

 
Table 3: Result of bi-correlation for various cognitive tasks 

performed by subjects at t=1 

Bicorrelation 
at t=1  T1  T2 T3 T4 T5 

S1 -0.0195  0.0025 0.034 0.0541 0.178 
S2 -0.0700 -0.327  -0.134 -0.145 0.087 
S3 -0.0030 -0.089  -0.018 -0.079 0.019 
S4 -0.1120 -0.199  -0.073 -0.135 0.047 
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Fig. 5: Graphical representation of bicorrelation versus delay 

for all cognitive tasks performed by a subject 
 
 
 
 
 

 

 

 

 

 

 

 

 
 
 

Fig. 6: Graphical representation of Pearson autocorrelation 

versus delay for the cognitive tasks performed by a 

subject 
 

The correlation dimension of most mental activities 

appeared to be higher compared to the relaxation 

condition. Hence it is concluded that cognitive and 

mental activity is associated with a higher correlation 

dimension in the EEG.  

Bi correlation is a nonlinear third-order correlation 

measure. It is used as a statistic for the test of linearity 

or nonlinearity called the Hinich test in the time 

domain. 

There is no predefined range of expected values for 

bi-correlation and cumulative bi-correlation, other than 

[-1, 1].  If the EEG time series shows a higher value of 

bi-correlation it is said to be linear. A decrease in the 

value of bi-correlation corresponds to the EEG time 

series   being   nonlinear in nature.  From   Table 3 and 

Fig. 5, the activity of imagining an object rotating (T2) 

has negative correlation and visual counting activity 

(T5) has positive correlation thus showing that T2 is 

more complex and random and T5 is more predictable.  

Pearson autocorrelation describes 

the correlation between values of the time series at 

different times, as a function of the two times or of the 

time lag. It gives a value between [-1, 1] with 1 

indicating perfect correlation, 0 is no correlation and -1 

indicating negative correlation.  

Table 4: Result of Pearson autocorrelation for various cognitive 

tasks performed by subjects at t = 1 

Pearson  
autocorrelation 

at t = 1 T1 T2 T3 T4 T5 

S1 0.9978 0.9977 0.9979 0.9981 0.9981 

S2 0.9981 0.9977 0.9982 0.9983 0.9981 
S3 0.9978 0.9978 0.9977 0.9977 0.9978 

S4 0.9980 0.9979 0.9981 0.9979 0.9980 

 
Table 5: Result of Hurst exponent for various cognitive tasks 

performed by subjects 

Hurst 

exponent T1 T2 T3 T4 T5 

S1 0.4845 0.5567 0.5320 0.5194 0.5410 

S2 0.4065 0.6320 0.5256 0.5801 0.5684 

S3 0.4108 0.5763 0.5085 0.5488 0.5380 
S4 0.4182 0.5771 0.5424 0.5376 0.5544 

 

From Table 4 and Fig. 6, it is seen that visual 

counting activity (T5) has the most positive correlation 

and the task of figure rotation (T2) has the least positive 

correlation.  
If H = 0.5, the behavior of the time-series is similar 

to a random walk. If H <0.5, the time-series cover less 
‘‘distance’’ than a random walk (i.e., if the time series 
increases, it is more probable that then it will decrease). 
But if H >0.5, the time-series covers more ‘‘distance’’ 
than a random walk (if the time-series increases, it is 
more probable that it will continue to increase). The 
Hurst exponent is limited to a value between 0 and 1, as 
it corresponds to a fractal dimension.  

The self-similarity parameter, H has a value higher 

than 0.5 for all the states compared to the resting 

condition. This means that randomness increases if the 

subject is performing the tasks. This value is maximum 

in object rotation task (T2) from which it gradually 

decreases in the other states indicating higher self-

similarity. Higher the Hurst exponent, the process is 

said to be smoother and vice versa. You could calculate 

an H>1, but it would not have any meaning using the 

accepted definition and fractal dimension boundaries 

(fractions between integer dimensions must always be 

less than one) (Table 5 and Fig. 7). 

We construct the EEG attractors of all five kinds of 

mental activities of 4 subjects and find that EEG 

attractors of various patterns have similar 

characteristics. As can be seen from Fig. 8, the 

attractors' track often rotates in an extremely complex 

way but there is still internal structure when the 

attractors is magnified. The attractors of resting, 

composition of a letter and visualizing a 3-dimensional 

object being rotating about an axis often distribute in a 

small ellipse region, while the point in the attractors of 

mental arithmetic and visualizing numbers being 

written centralize nearby the 45 degree line and there is 

a large distributing range along the 45 degree line. This 

is because during rational computation such as 

mathematics or imagination, the value of the adjacent 

sampling points of EEG signals are close and the 

amplitude values of the whole EEG signals are great. 
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Fig. 7: Graphical representation of Hurst exponent for the cognitive tasks performed by a subject

 

 
Fig. 8: EEG attractors of five kinds of cognitive tasks of a subject in the order of

Mental composition of a letter, Arithmetic and Visualizing numbers being written or erased on a blackboard

 

DISCUSSION 

 

In this study, we use the approximate entropy, the 

correlation dimension, bi-correlation, Pearson 

autocorrelation Hurst exponent and phase space 

methods to study the EEG signal of 5 kinds of cognitive 

activities of 4 subjects. Although in every method there 

are merits and flaws, the results show the nonlinear 

dynamic characteristics of the human brain.

The presence of repetitive patterns of fluctuation in 

a time series renders it more predictable than a time 

series in which such patterns are absent. The analysis of 

the approximate entropy presents the degree of various 
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representation of Hurst exponent for the cognitive tasks performed by a subject 

EEG attractors of five kinds of cognitive tasks of a subject in the order of Relaxation, Visualizing a 3d figure rotating, 

Mental composition of a letter, Arithmetic and Visualizing numbers being written or erased on a blackboard

In this study, we use the approximate entropy, the 

correlation, Pearson 

autocorrelation Hurst exponent and phase space 

methods to study the EEG signal of 5 kinds of cognitive 

activities of 4 subjects. Although in every method there 

are merits and flaws, the results show the nonlinear 

tics of the human brain. 

The presence of repetitive patterns of fluctuation in 

a time series renders it more predictable than a time 

series in which such patterns are absent. The analysis of 

the approximate entropy presents the degree of various 

mental activities on generating new pattern (Zhou 

2005). The authors think that larger the approximate 

entropy of the subject at the same state, the more 

innovational he has.  

The correlation dimension shows the variability of 

different consciousness states as well (

which can better indicate the activity degree of the 

human mind, combining with the approximate entropy. 

It is well known that the dimension of EEG time series 

is closely related to the cognitive activity of the brain. 

The correlation dimension increases with the degree of 

the cognitive activity (Natarajan 

results show that dimension is higher during the letter 

 

Relaxation, Visualizing a 3d figure rotating, 

Mental composition of a letter, Arithmetic and Visualizing numbers being written or erased on a blackboard 

ivities on generating new pattern (Zhou et al., 

2005). The authors think that larger the approximate 

entropy of the subject at the same state, the more 

The correlation dimension shows the variability of 

well (Alexey, 2008), 

which can better indicate the activity degree of the 

human mind, combining with the approximate entropy. 

It is well known that the dimension of EEG time series 

is closely related to the cognitive activity of the brain. 

on dimension increases with the degree of 

the cognitive activity (Natarajan et al., 2004). Our 

results show that dimension is higher during the letter 
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writing activity indicating that the brain is involved in 

thinking rigorously, meaning that the brain is in an 

active cognitive state. A decreased value indicates that 

the randomness of the brain activity is reduced. 
Both bi-correlation and Pearson autocorrelation are 

measures of testing linear or nonlinear correlation in the 
time series. From the results the authors think that a 
higher value corresponds to linear nature and a decrease 
in value to nonlinear nature of the EEG time series of 
various mental states. The self-similarity parameter is 
higher when the subject is performing tasks which 
require greater consciousness than the rest owing to a 
smoother time series without noise. The phase space 
plots show unique patterns for each consciousness state 
useful in computing correlation dimension. 

The above analyses indicate that different cognitive 
activities have profound nonlinear dynamic 
characteristics. Some differences are difficult to 
perceive and the linear and nonlinear quantitative 
parameters of different individuals have great 
differences. Hence it is a critical problem to find a 
widely applicable criterion, which needs to be explored 
for a long time. 
 

CONCLUSION AND FUTURE SCOPE 
 

The various task data are analyzed effectively by 
considering the linear and nonlinear parameters. For 
certain analysis linear hypothesis is replaced by 
nonlinear behavior. Higher order statistics are more 
useful for chaotic as well as different cognitive state 
measurement which was not possible by linear methods 
such as spectral methods and other conventional 
methods like parametric methods. By taking suitable 
parameters the analysis of human mind can be applied 
to ADHD and dementia and other cognitive disorders in 
the brain. 
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