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Abstract: Glucose and ethanol are critical quality control components in the wine fermentation process. In this 
study, we present a novel method in which Fourier Transform (FT)-Raman spectroscopy and chemometric 
techniques are used to quantitatively analyze ethanolic beverages produced by fermentation. Chromium (VI) Oxide 
(CrO3) was flame-sealed into a fused silica cuvette and used as external standard. Band ratios between the Raman 
bands of the target molecule and that of CrO3 were calculated and found to be proportional to the concentration of 
ethanol and glucose. This method can eliminate factors such as laser power or instrumental effects. After pre-
processing the spectra, Principal Component Analysis (PCA) and Partial Least Squares (PLS) were selected as the 
multivariate calibration models. The prediction models proved to be robust resulting in a desirable mapping between 
the spectra and output attributes. This method could predict the ethanol and glucose concentrations simultaneously 
and produced a more linear calibration curve. As a result, there is a great potential to use Raman spectroscopy in 
wine fermentation process and on line fermentation control. 
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fermentation 
 

INTRODUCTION 
 

In winemaking, fermentation is the primary process 
by which grape juice is converted into an ethanolic 
beverage. The ethanol and glucose concentrations play 
critical roles in the fermentation process. Therefore, a 
reliable and rapid on-line method is needed to measure 
the ethanol and glucose concentration during wine 
fermentation.  

Gas chromatography and liquid chromatography are 
generally used to detect the individual components in 
wine. Chromatography can provide qualitative and 
quantitative information on a given sample by isolating 
its many components. However, this method is rather 
time-consuming and therefore it cannot be used as an on 
line detection method. Chromatography is also difficult 
to apply to water-rich samples. To minimize sample pre-
treatment, these time-consuming methods have been 
replaced by vibration spectroscopic techniques for 
qualitatively   identifying   target   compounds  (Boyaci 
et al., 2012; Di Egidio et al., 2010; Gallego et al., 2011; 
Numata and Tanaka, 2011). Infrared (IR) spectroscopy 
is a simple and reliable technique that is used in both 
research and industry to detect organic compounds. 
However, the OH stretching vibration produces very 
intense absorption bands in the spectra. Therefore, IR 
spectroscopy cannot be used for water-rich samples. 

Real samples must be separated and concentrated prior 
to analysis, making the aforementioned analyses 
difficult to apply. Our primary goal is to develop a 
cheap, rapid and accurate analytical procedure to 
quantify ethanol and glucose concentrations for quality 
control purposes (Numata and Tanaka, 2011). 

Raman spectroscopy is unique among spectroscopy 
techniques because liquid, gas or solid samples can be 
analyzed directly and rapidly without any sample 
preparation (Omar et al., 2012). Raman spectroscopy 
offers several advantages over chromatography and IR 
spectroscopy in the analysis of water-rich and multi-
component samples. For example, sample preparation is 
not required in Raman spectroscopy, which is therefore 
suitable for on-line quantitative analysis. The band 
intensities caused by the OH stretching vibration are 
also weak in Raman spectra, such that a water-rich 
sample can be directly analyzed (Numata et al., 2011). 
Although Raman spectra can be collected quite easily, 
the procedure for quantifying the spectra is rather 
cumbersome because the intensity of the Raman spectra 
depends on the sample concentration as well as other 
factors, such as the laser power and the instrumental 
effects. Therefore, the correlation between the absolute 
intensity of the Raman spectra and the concentration is 
not good. And the standard is needed to eliminate the 
effects  of  the  laser  power  and  the   instrumental.   To 
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remove these effects, a quantitative method has been 
developed in which a reference of known concentration 
is used as an internal or external standard. The band 
ratios between the Raman band of a target molecule and 
that of the standard can be calculated and used in 
quantitative analysis (Favors et al., 2005; Nah et al., 
2007; Numata et al., 2011). The internal standard is the 
solvent or an added component. So the chemical 
interaction may be occurred between the analyte and the 
standard. An external standard can also be used to 
eliminate factors such as laser power or instrumental 
effects. The Raman spectroscopy in which both the 
external standard and the target sample can be measured 
simultaneously  have  been  developed  already (Favors 
et al., 2005; Nah et al., 2007). However, since these 
instruments are very complicated and expensive. The 
method in which the Raman spectroscopy of the 
external standard is measured in advance was adopted in 
(Numata et al., 2011). But this method cannot measure 
the external standard and the target sample spectrum 
simultaneously. 

In this study, we used a different method to 
eliminate the effects of the laser power and the 
instrumental effects. CrO3 was used as an external 
standard in developing a quantitative Raman method. 
The Raman spectra were related to the concentrations 
using Principal Component Analysis (PCA) and Partial 
Least Squares (PLS) analysis. Several pre-processing 
and correlation methods were applied to the data to 
obtain optimized models (Diakabana et al., 2014). The 
Root-Mean-Square Error of Prediction (RMSEP), the 
Root-Mean-Square Error of Cross Validation 
(RMSECV),   the   correlation   coefficient   (r2)   and   
the Residual Predictive Deviation (RPD) were  
examined   to   optimize   the   model.    In    this    
study,  RMSECV  =  0.003614,  RMSEP  =  0.004282,  
r2  =  0.99827  and  RPD  =  6.3427  were  obtained  for  
the    ethanol    concentration,    RMSECV    =   0.00327, 

RMSEP = 0.003052, r2 = 0.99861 and RPD = 19.0575 
were obtained for the glucose concentration. These 
results represent the potential and reliability of Raman 
spectroscopy for the on line quantification of ethanol 
and glucose concentrations that is critical for quality 
control in wine fermentation. 
 

METHODOLOGY 

 

Preparation of standard solution and calibration 

curves: Absolute ethanol and glucose were locally 
purchased as commercial products and used without 
further purification. Standard solutions at several 
concentrations were obtained by diluting the pure 
products with water. 

Forty samples (juice and ferments) with different 
ethanol and glucose concentrations (ranging from 0.05-
0.38 V/V for ethanol and 3-50 g/L for glucose) were 
prepared to produce the calibration curves. All of the 
wine samples were stored below 5°C to prevent any 
changes in their characteristics during spectral 
acquisition and laboratory testing.  
 
Raman spectroscopy: The Raman spectra of samples 
were obtained with a Bruker MultiRAM (Bremen, 
Germany) Fourier Transform (FT) Raman spectrometer 
equipped with a germanium detector using liquid 
nitrogen as the coolant. The excitation light was 
generated by a near infrared Nd:YAG laser at 1064 nm. 
The laser light with a power of 500 mw was introduced 
and focused on the sample and the scattered radiation 
was collected at 1800. All of the Raman spectra 
recorded in the 4000-400 cm-1 range using a spectral 
resolution of 6 cm-1 and a total of 512 scans were 
averaged for each spectrum. The OPUS 7.0 (Bruker 
Optics, Germany) software program was used for 
Raman spectral data acquisition. A quartz cuvette

 

 
 

Fig. 1: The structure of FT-Raman system and the cuvette 
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Fig. 2: Raman spectrum of 10% V/V ethanol, 25 g/L glucose, 
water and chromium oxide 

 
with optically flat faces, a mirrored backside and near 
Infrared (IR) transparency was used as the cell for the 
liquid samples. CrO3 was flame-sealed into the cuvette 
and used as an external standard to correct for the effects 
on the Raman intensity from the variations in the laser 
power. This procedure allowed for the mixed Raman 
spectrum of the CrO3 standard and the sample to be 
collected synchronously without any extra optical 
configuration. The top of cuvette was sealed with a 
Teflon plastic cap to prevent the liquid from 
evaporating. The structure of system is shown in Fig. 1. 
The thicknesses of the quartz glass with double side 
polished and single side polished are 0.5 and 1 mm, 
respectively. The thickness of the CrO3 is about 0.1 mm.  

To eliminate the effects of the test environment, all 
of the experiments were performed at 25°C. Before 
acquiring the Raman spectra, the samples were warmed 
from 5 to 25°C and left at 25°C for 1 h. Then, a sample 
was placed in a cuvette sample holder and its Raman 
spectrum was obtained. To minimize the vaporization of 
ethanol in the samples, the Raman spectra were run 
immediately after sample preparation. 

The Raman spectrum for the ethanol solution and 
glucose solution, CrO3 and water are shown in Fig. 2. 
The ethanol and glucose bands can be clearly observed. 
The intense bands at approximately 2900 cm-1 
correspond to water. However, there is generally little 
interference between the water, glucose and ethanol and 
therefore this region cannot be neglected in the 
quantitative analysis. 
 
HPLC measurements for reference data: In our 
experiments, the ethanol and glucose concentrations 
were determined using High-Performance Liquid 
Chromatography (HPLC) (Merck Hitachi, Japan). 
Before sample detection, all of the samples were filtered 
through a 0.45 µm pore size membrane filter. Then, the 
analysis was performed via isocratic elution using 0.01 

N sulfuric acid at a flow rate of 0.7 mL/min. The 
column temperature was 60°C and the injection volume 
was 20 µL. The analysis was carried out in triplicate. 
The HPLC results were used as reference data in the 
Raman analysis. 
 
Data pre-processing: The spectra data were obtained 
using an OPUS 7 (Bruker Optics Inc.). Data pre-
processing is a key step in multivariate analysis because 
appropriate data treatment is needed to develop the best-
fit model. The most common pre-processing techniques 
were applied to enhance the spectra, such as 
Multiplicative Signal Correction (MSC), Standard 
Normal Variate correction (SNV), Savitzky-Golay (SG) 
smoothing, Direct Orthogonal Signal Correction 
(DOSC) and filtering and first and second order 
derivation. In addition to these pre-processing 
techniques, baseline correction, spectra normalization 
and combinations of these two methods have been used 
(Omar et al., 2012). To obtain the best model, different 
mathematical pretreatments were used to remove or 
minimize unwanted spectral contributions. In this study, 
SG Filter, SNV, MSC and derivative transformations 
were combined with a baseline correction.  

The pre-treated spectral data were processed using 
Principal Component Analysis (PCA). PCA identifies 
the orthogonal directions of the components with the 
maximum variance in the original dataset in decreasing 
order and projects the data onto a lower-dimensionality 
space formed by a subset of the highest-variance 
components. The orthogonal directions are linear 
combinations of the original variables and each 
component corresponds to a part of the total variance of 
the data. The first significant component corresponds to 
the largest percentage of the total variance, the second 
significant component to the second largest percentage 
of the total variance and so forth (Di Egidio et al., 
2010). And the PCA was used to eliminate the defective 
spectra outlier. Scores, loadings and explained variance 
were studied for the first 4 Principal Components (PC). 
And the regression coefficients of principal component 
score and composition content are shown in Table 1. 

PLS was combined with data pre-processing to 
predict the ethanol and glucose concentrations 
simultaneously. The samples were separated into two 
groups by employing the Kennard-Stone algorithm 
(Kennard and Stone, 1969) and the optimum number of 
latent variables was chosen by the root mean square 
error of cross validation obtained from the calibration 
set  by  internal  validation  (leave  one  out).  A  total  of  
50  samples  were  randomly  separated  for  calibration  
(= 80%) and validation (= 20%). The sets spanned the 
entire range of values; thus, there was no need to 
arbitrarily assign the samples to the sets. In our study, 
the following ranges of Raman spectra were applied in 
PLS model construction: 2500-3500 and 700-1500 cm-1.  
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Table 1: Regression coefficient of principal component score and composition content 

Composition 
content 

Principal component 
----------------------------------------------------------------------------------------------------------------------------------------------------------- 
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Ethanol 0.25820 -0.0189 -0.1376 0.39529 1.8080 0.2142 0.0817 -0.3894 0.3887 -3.9248
Glucose 0.10263 0.1550 -0.1089 0.04370 0.0287 0.1770 -0.0522 -0.1170 0.0940 0.1045 

 
In this study, the prediction capacity of the 

calibration models was evaluated using several 
parameters: 

 
• The Root Mean Square Error of Prediction 

(RMSEP), which was used to determine the average 
prediction error or accuracy of the calibration model 

• The Root Mean Square Error of Cross Validation 
(RMSECV), i.e., the prediction error of the 
calibration model, which is defined as the standard 
deviation in the differences between the spectral 
data and the reference values in the cross-validation 
sample set 

• The correlation coefficient (r2) 
• The Residual Predictive Deviation (RPD) that is 

related  to  the  precision  of  the  PLS  model  (Niu 
et al., 2012).  These  parameters  are  defined  by  
Eq. (1) (Ozturk et al., 2012): 
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where, 
yi  = The actual value obtained from HPLC methods 
ŷi  = The predicted value by Raman spectra for the 

same sample 
y  = The mean of each set 
nc  = The number samples used in calibration set 
np  = The number samples used in validation set 
n  = The number samples used in each set 
S.D.  = Standard Deviation in each set 

 
Accuracy of the prediction models were evaluated 

by using R2 and RPD determined for the calibration sets. 
In addition to these criteria; to construct a good model, 
the absolute values of RMSECV and RMSEP and 
differences between them should be small. The RPD 
value was used to check the robustness of the model and 
the higher RPD values were used for prediction 
purposes. A cut-off RPD value of 3 is recommended by 
researchers to ensure that a model is robust. The 
calibration models with the highest r2, the lowest 

RMSECV and RMSEP were considered to be the 
optimal models in this study.  
 

RESULTS AND DISCUSSION 

 

Spectra and sample selection: The Raman spectra of 
the ethanol-glucose-water liquid mixtures and the wine 
samples were measured. Figure 3 consists of 50 spectra 
of wine samples with ethanol and glucose 
concentrations ranging from 0.04-0.40 v/v and 10-85 
g/L, respectively. CrO3 was used as the standard and its 
Raman spectrum was measured synchronously with that 
of the samples. The spectra for the ethanol-glucose 
mixture and the wine samples have very similar shapes 
and all show intense absorption bands at approximately 
2974, 2929 and 2885 cm-1, respectively which are 
mainly related to the C-H stretching modes of ethanol 
(Numata et al., 2011). In the normal Raman spectrum of 
an aqueous saturated glucose solution, the peaks at 
1462, 1365, 1268, 1126, 915 and 850 cm-1, respectively 
correspond  to  peaks  for  crystalline  glucose  
(Lyandres et al., 2005). The peak at 3200 cm-1 
corresponds to that of water. 

First, the samples were divided into two sets, a 
calibration set and a prediction set, in a proportion of 4 
to 1. The performances of the different models were 
compared using the same calibration set and prediction 
set that were used. HPLC was used to obtain reference 
data for ethanol and glucose. The calibration ranges 
were larger than those used for the prediction sets for 
both ethanol and glucose, thereby enabling stable and 
robust calibration models to be developed for the two 
components. 
 
Multivariate calibration models: The most accurate 
and precise calibrated models were obtained by 
evaluating the prediction capacity of several PLS 
models. First, the calibration model was developed 
using the spectral range: 
 
• 2500-3500  
• 700-1500 cm-1, which is according to the PCA 

 
Thus, the time taken to collect the spectra and perform 
the analysis was considerably shorter. The performances 
of the differential regression models were compared for 
ethanol and glucose, as shown in Table 2. The 
prediction capacity of the PLS models was compared 
using the r2, RMSECV, RMSEP and RPD (%) values. 
The lower RMSEP and RMSECV values 
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Fig. 3: Original Raman spectra of 40 ethanol-glucose liquid 
and 10 wine samples 

 
show a better predictive ability and the higher r2 and 
RPD values demonstrate the strong robustness and 
universality of the calibration. The optimal number of 
latent variables was decided by F-test. The selected 
spectra and the pre-processing method that are shown in 
bold were used for the quantitative measurements in 
Table 2. The prediction performance of the baseline 
correction and DOSC model was better than the other 
models for ethanol and glucose. Compared with the best 
PLS regression models, the highest-performing PLS 
model for ethanol had a RPD value of 6.3427, for 
glucose had a RPD value of 19.0575, this model 
produced accurate predictions and was considered to 
have a good predictive ability. Thus, the ethanol and 
glucose concentrations could be accurately predicted 
using PLS regression.  

The calibration samples were previously analyzed 
by HPLC and the resulting concentrations were used as 
reference values. The concentrations obtained from 
Raman spectroscopy were used as the predicted values. 
The predicted  and reference values are compared in  
Fig. 4. The calibration samples are marked by the  
symbols,  whereas  the standard samples are  marked  by 

 
 

(a) 
 

 
 

(b) 
 
Fig. 4: Calibration and validation of PLS model for ethanol 

concentration (V/V); (a): glucose concentration (g/L); 
(b): prediction by FT-Raman spectroscopy 

 
round dots. The validation results exhibited excellent 
linearity, indicating that the model was linear over a 
wide range of ethanol or glucose concentrations. Thus, 
combining FT-Raman spectroscopy with a baseline 
correction and the PLS method is a powerful means of 

 
Table 2: Prediction models obtained with different data treatment 
Component Spectral pre-processing RMSECV (%) RMSEP (%) r2 RPD 
Alcohol (V/V) None 0.003900 0.006000 (3) 0.99780 4.4900 
 Baseline 0.003700 0.004800 (3) 0.99700 5.6500 
 Baseline+SNV 0.003900 0.005400 (3) 0.99600 5.0100 
 Baseline+MSC 0.004500 0.004200 (4) 0.99500 6.3800 
 Baseline+DOSC 0.003614 0.004282 (3) 0.99827 6.3427 
 Baseline+SG-21points 0.003200 0.005240 (3) 0.99760 5.1833 
 Baseline+first derivative 0.003543 0.002961 (3) 0.99786 9.1716 
Sugars (g/L) None 0.004100 0.002730 (5) 0.99787 21.3000 
 Baseline 0.004400 0.004200 (4) 0.99680 14.0100 
 Baseline+SNV 0.003600 0.005700 (5) 0.99674 10.1640 
 Baseline+MSC 0.003800 0.003300 (6) 0.99780 17.1510 
 Baseline+DOSC 0.003270 0.003052 (5) 0.99861 19.0575 
 Baseline+SG-21points 0.004800 0.002870 (4) 0.99816 20.2759 
 Baseline+first derivative 0.004770 0.002700 (4) 0.99713 21.5359 
The values in parentheses refer to the number of latent variables 
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determining the concentrations of ethanol or glucose in 
wine. The baseline correction can be combined with 
PLS to quantify the concentrations of ethanol and 
glucose in the fermentation process obtained using 
Raman spectroscopy.  
 

CONCLUSION 
 

In this study, FT-Raman spectroscopic methods 
were used to efficiently measure ethanol and glucose 
concentrations in fermentation. This method not only 
minimizes the amount of laboratory equipment required, 
eliminates sample preparation and reduces collection 
and processing time but also eliminates the need for 
chromatographic separation and the measurement errors 
resulting from a large number of experimental steps. 
Raman spectra obtained from different samples were 
normalized using the Raman scattering intensity of 
chromium oxide, which was used as an external 
standard. The models developed for the quantitative 
analysis have shown that the use of Raman 
spectroscopy, together with multivariate calibration 
regression based on PLS, allows the quantification of 
ethanol and glucose concentration in wine fermentation. 
The results clearly show that Raman spectroscopy can 
be used to identify the ethanol and glucose concentration 
in wine fermentation. 
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