Advance Journal of Food Science and Technology 9(5): 389-392, 2015 DOI: 10.19026/ajfst.9.1921 ISSN: 2042-4868; e-ISSN: 2042-4876 © 2015 Maxwell Scientific Publication Corp. Submitted: March 19, 2015 Accepted: March 24, 2015

Published: August 20, 2015

# Research Article Forecasting of Water Resource of China based on Grey Prediction Model

Shuqing Hou Changsha Vocational and Technical College, Changsha 410010, P.R. China

**Abstract:** Water resource planning is very important for water resources management. A desirable water resource planning is typically made in order to satisfy multiple objectives as much as possible. Thus the water resource planning problem is actually a Multiple Attribute Decision Making (MADM) problem. The aim of this study is to put forward a new decision method to solve the problem of water resource planning in which attribute values expressed with triangular fuzzy numbers. The new method is an extension of projection method. To avoid the subjective randomness, the coefficient of variation method is used to determine the attribute weights. A practical example is given to illustrate the effectiveness and feasibility of the proposed method.

**Keywords:** GM (1, 1), grey prediction model, water resource

### **INTRODUCTION**

China's total water resources are 2.8 trillion m<sup>3</sup>, among which there are 2.7 trillion m<sup>3</sup> of surface water, 0.83 trillion m<sup>3</sup> of groundwater. Due to interconversion and mutual replenishment between surface water and groundwater, with 0.73 trillion m<sup>3</sup> deduction from repeated counting of the two, the net amount of groundwater resources is about 0.1 trillion m<sup>3</sup>. In accordance with internationally recognized standards, the per capita water resources of less than 3,000 m<sup>3</sup> falls to the category of mild water shortage; less than 2,000 m<sup>3</sup>/capita water to moderate water shortage; severe lack of water happens when there is less than 1000 m<sup>3</sup>/capita water resources; water resources per capita less than 500 m<sup>3</sup> is of extreme water shortage. There are 16 provinces (autonomous regions and municipalities) in China per capita water resources (excluding transit) is below the line of severe water shortage, per capita water resources in six provinces, autonomous regions (Ningxia, Hebei, Shandong, Henan, Shanxi, Jiangsu) less than 500 m<sup>3</sup>, is extremely dry areas.

China is facing increasing pressure on flesh water supplies (Liu and Tang, 2014; Cui *et al.*, 2014). It is among the 13 lowest water availability countries in the world and the per capita water availability of China is about a quarter of the world average. Majority of the available water is concentrated in the south, 1eaving the northern and western China to experience perpetual droughts. Rivers, lakes and underground aquifers are literally drying up due to over drafts. Most of the remaining surface waters are so polluted that they are no longer suitable for human contacts. With population growth accelerated industrialization and urbanization and global climate change, China's water crisis is exacerbating (Liao *et al.*, 2013; Zhang *et al.*, 2013). Water shortage has become a major obstacle restricting China's economic development (Yi *et al.*, 2011).

The aim of this study is to develop the grey prediction model to predict the water resource of China.

# METHODOLOGY

**Preliminaries:** Grey prediction model is an important model in grey system theory, which proposed by Deng (1989). Grey prediction model has received great attention because it only requires a limited amount of data to estimate or measure data collected from an uncertain and indeterminate system and it has a good performance in prediction performance (Li *et al.*, 2008; Yin and Tang, 2013; Hsu and Chen, 2003).

The  $1^{\text{st}}$  order gray prediction model, briefly denoted by GM (1, 1), is one of the most frequently used grey forecasting model first proposed by Deng (1989).

The GM (1, 1) model constructing process is described below (Deng, 1989):

In the positive sequence GM (1, 1) model, if we set the original data sequence in positive sequence with *n* entries as a vector  $\mathbf{x}^{(0)} = [\mathbf{x}^{(0)} (1), \mathbf{x}^{(0)} (2), ..., \mathbf{x}^{(0)} (n)]$ . Here  $\mathbf{x}^{(0)}(1)$  is the beginning point.

The AGO transformation is defined as:

$$x^{(1)}(k) = \sum_{i=1}^{k} x^{(0)}(k), k = 1, 2, \cdots, n$$
(1)

The positive sequence GM (1, 1) model can be constructed by establishing a first order differential equation  $x^{(1)}(k)$  as:

$$\frac{dx^{(1)}(k)}{dt} + ax^{(1)}(k) = b$$
(2)

or:

$$\Delta x^{(1)}(k+1) + ax^{(1)}(k+1) = b \tag{3}$$

where,

$$\Delta x^{(1)}(k+1) = x^{(1)}(k+1) - x^{(1)}(k)$$
  
=  $x^{(1)}(k) + x^{(0)}(k+1) - x^{(1)}(k)$   
=  $x^{(0)}(k+1)$   
 $x^{(1)}(k+1) = \frac{1}{2} \Big[ x^{(1)}(k) + x^{(1)}(k+1) \Big]$ 

So we derive Eq. (4) from (3):

$$x^{(0)}(k+1) = a \left[ -\frac{1}{2} \left[ x^{(1)}(k) + x^{(1)}(k+1) \right] \right] + b \qquad (4)$$

where, k = 1, 2, ..., n - 1.

Therefore, the solution of Eq. (2) can be obtained by using the least square method. That is:

$$\hat{x}^{(1)}(k+1) = \left[x^{(0)}(1) - \frac{\hat{b}}{\hat{a}}\right] e^{-\hat{a}k} + \frac{\hat{b}}{\hat{a}}$$
(5)

where, k = 0 denotes the beginning position,  $\begin{bmatrix} \hat{a}, \hat{b} \end{bmatrix}^T = \begin{bmatrix} B^T B \end{bmatrix}^{-1} B^T Y$  and:

$$Y = \begin{pmatrix} x^{(0)}(2) \\ x^{(0)}(3) \\ \vdots \\ x^{(0)}(n) \end{pmatrix}, B = \begin{pmatrix} -1/2 \left[ x^{(1)}(1) + x^{(1)}(2) \right] \\ -1/2 \left[ x^{(1)}(2) + x^{(1)}(3) \right] \\ \vdots \\ -1/2 \left[ x^{(1)}(n-1) + x^{(1)}(n) \right] \end{pmatrix}$$

We obtained  $\hat{x}^{(1)}$  from Eq. (5). Let  $\hat{x}^{(0)}$  be the fitted and predicted series:

$$\hat{x}^{(0)} = (\hat{x}^{(0)}(1), \hat{x}^{(0)}(2), \cdots, \hat{x}^{(0)}(n), \cdots)$$
(6)

where,

$$\hat{x}^{(0)}(1) = x^{(0)}(1)$$

Applying the inverse AGO, we then have:

$$\hat{x}^{(0)}(k+1) = (1-e^{\hat{a}}) \left[ x^{(0)}(1) - \frac{\hat{b}}{\hat{a}} \right] e^{-\hat{a}k}$$
(7)

Here  $k = 1, 2, \cdots$  and  $\hat{x}^{(0)}(1), \hat{x}^{(0)}(2), \cdots, \hat{x}^{(0)}(n)$  are called the GM (1, 1) fitted sequence, while

 $\hat{x}^{(0)}(n+1), \hat{x}^{(0)}(n+2), \cdots$  are called the GM (1, 1) forecast values.

The time sequence calculated from the model includes  $x^{(0)}(2), \dots, x^{(0)}(n)$ . The residual error paralleled to time I can be depicted as follows:

$$\varepsilon^{(0)}(k) = x^{(0)}(i) - \hat{x}^{(1)}(k), i = 2, 3, \cdots, n$$

The mean residual error and corresponding equation can be denoted as:

$$\overline{\varepsilon} = \frac{1}{n-1} \sum_{i=2}^{n} \varepsilon^{(0)}(i) , \ s_{1}^{2} = \frac{1}{n-1} \sum_{i=2}^{n} (\varepsilon^{(0)}(i) - \overline{\varepsilon})^{2}$$

While the average value and equation of the initial datum are computed according to:

$$\overline{x}^{(0)} = \frac{1}{n-1} \sum_{i=2}^{n} x^{(0)}(i) \quad S_2^{2} = \frac{1}{n-1} \sum_{i=2}^{n} (x^{(0)}(i) - \overline{x}^{(0)})^2$$

A quantity  $C = S_1 / S_2$  named posterior variance ratio is used to test the prediction.

#### CASE STUDY

China is facing severe water problems including scarcity and pollution which are now becoming key factors restricting developments. The problem is to determine an effective, feasible and cost-efficient water strategy for 2014 to meet the projected water needs of China in 2025 and identify the best water strategy. To predict how many provinces of China is water resource shortage and how much the shortage degree is. Here we will apply GM (1, 1) to predict the water consumptions in China.

According to China's 31 provinces and cities in the past nine years (2003-2011 years), Gray prediction model GM (1, 1) is used to predict water amount of China's 31 provinces and cities by 2025 the 14 years (2012-2025) years and according to the amount of water resources in the shortage of water resources occupancy of the degree of the corresponding ranking.

According to China's geographical situation, we study per capita water resources of the China's 31 provinces. With the gray forecast predict GM (1, 1) model, per capita consumption demand is predicted from 2013-2015, based on the data from 2003-2011. Using MATLAB software, we get C = 0.45, then from Table 1 we know that the prediction is acceptable. The predicted values are given in the following Table 2.

Table 1: Posterior-variance-test criterion for model evaluation

| C                                                       | Forecasting ability |
|---------------------------------------------------------|---------------------|
| C<0.35                                                  | High forecasting    |
| 0.35 <c<0.50< th=""><th>Good forecasting</th></c<0.50<> | Good forecasting    |
| 0.50 <c<0.65< th=""><th>Weak forecasting</th></c<0.65<> | Weak forecasting    |
| C>0.65                                                  | Fail forecasting    |

| Adv. J. Food Sci | . Technol., | 9(5): 389 | 392, 2015 |
|------------------|-------------|-----------|-----------|
|------------------|-------------|-----------|-----------|

| Table 2: Thirty one provinces per capita water resources (cu.m/person) from 2012-2025 |  |
|---------------------------------------------------------------------------------------|--|
| Year                                                                                  |  |
|                                                                                       |  |

| Region       | 2012       | 2013       | 2014       | <br>2023       | 2024       | 2025       |
|--------------|------------|------------|------------|----------------|------------|------------|
| Beijing      | 117.840    | 110.690    | 103.970    | <br>59.190     | 55.600     | 52.230     |
| Tianjing     | 87.682     | 81.481     | 75.719     | <br>39.130     | 36.363     | 33.791     |
| Hebei        | 189.971    | 186.346    | 182.790    | <br>153.691    | 150.758    | 147.881    |
| Shanxi       | 332.845    | 351.311    | 370.800    | <br>602.808    | 636.250    | 671.548    |
| Inner Mong   | 1789.901   | 1858.452   | 1929.629   | <br>2706.300   | 2809.948   | 2917.567   |
| Liaoning     | 951.099    | 1025.152   | 1104.970   | <br>2169.759   | 2338.697   | 2520.787   |
| Jilin        | 1750.654   | 1851.483   | 1958.119   | <br>3241.251   | 3427.931   | 3625.362   |
| Heilongjiang | 2243.679   | 2395.462   | 2557.513   | <br>4609.728   | 4921.572   | 5254.513   |
| Shanghai     | 57.541     | 44.310     | 34.121     | <br>3.249      | 2.502      | 1.927      |
| Jiangsu      | 501.600    | 485.701    | 470.306    | <br>351.955    | 340.800    | 329.998    |
| Zhejiang     | 2156.824   | 2276.887   | 2403.635   | <br>3913.910   | 4131.785   | 4361.789   |
| Anhui        | 1449.765   | 1556.710   | 1671.543   | <br>3171.815   | 3405.790   | 3657.025   |
| Fujian       | 3265.449   | 3335.238   | 3406.518   | <br>4120.648   | 4208.714   | 4298.661   |
| Jiangxi      | 3871.021   | 4122.055   | 4389.368   | <br>7726.740   | 8227.816   | 8761.386   |
| Shandong     | 355.870    | 361.567    | 367.355    | <br>423.797    | 430.581    | 437.473    |
| Henan        | 451.173    | 460.316    | 469.644    | <br>562.581    | 573.982    | 585.614    |
| Hubei        | 2006.850   | 2155.008   | 2314.104   | <br>4393.276   | 4717.614   | 5065.897   |
| Hunan        | 2598.088   | 2699.624   | 2805.129   | <br>3960.942   | 4115.740   | 4276.589   |
| Guangdong    | 1951.085   | 2002.341   | 2054.944   | <br>2595.119   | 2663.295   | 2733.261   |
| Guangxi      | 4005.365   | 4204.610   | 4413.766   | <br>6832.219   | 7172.085   | 7528.857   |
| Hainan       | 7440.125   | 8596.210   | 9931.934   | <br>36439.719  | 42101.912  | 48643.927  |
| Chongging    | 2110.371   | 2247.146   | 2392.785   | <br>4210.713   | 4483.613   | 4774.199   |
| Sichuan      | 3534.035   | 3790.379   | 4065.318   | <br>7634.866   | 8188.669   | 8782.642   |
| Guizhou      | 2850.905   | 3029.052   | 3218.331   | <br>5553.246   | 5900.257   | 6268.952   |
| Yunnan       | 4572.077   | 4803.648   | 5046.948   | <br>7873.139   | 8271.906   | 8690.870   |
| Tibet        | 181615.043 | 194940.880 | 209244.487 | <br>395743.649 | 424780.974 | 455948.887 |
| Shaanxi      | 1746.629   | 1987.783   | 2262.233   | <br>7245.231   | 8245.567   | 9384.019   |
| Gansu        | 935.088    | 969.145    | 1004.444   | <br>1385,974   | 1436.453   | 1488.772   |
| Oinghai      | 16428.470  | 17760.120  | 19199.711  | <br>38719.859  | 41858.394  | 45251.330  |
| Ningxia      | 7.042      | 3,799      | 2.050      | <br>0.008      | 0.004      | 0.002      |
| Vinijona     | 4527 424   | 4631 560   | 4738 091   | <br>5814,174   | 5947 906   | 6084 714   |

| Year | 2003   | 2004   | 2005   | 2006   | 2007   | 2008   | 2009   | 2010   | 2011   |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| PCWR | 127.80 | 194.43 | 182.64 | 171.56 | 161.15 | 151.37 | 142.18 | 133.56 | 125.50 |

| Table 4: Beijing per capita water resources (cu.m/person) from 2012-2025 |        |        |        |       |       |       |       |
|--------------------------------------------------------------------------|--------|--------|--------|-------|-------|-------|-------|
| Year                                                                     | 2012   | 2013   | 2014   | 2015  | 2016  | 2017  | 2018  |
| PCWR                                                                     | 117.84 | 110.69 | 103.97 | 97.66 | 91.74 | 86.17 | 80.94 |
| Year                                                                     | 2019   | 2020   | 2021   | 2022  | 2023  | 2024  | 2025  |
| PCWR                                                                     | 76.03  | 71.42  | 67.09  | 63.01 | 59.19 | 55.60 | 52.23 |





Fig. 1: Comparison of actual population quantity and the forecast 2003-2025

Now we use Beijing as an example to illustrate the water resource variable situation in the future 13 years. In Table 3 and 4, we give the actual and predictive values of Per Capita Water Resources (cu.m/person) (PCWR) for Beijing from 2003 to 2011 and 2012-2025.

At the same time we also concluded that 2003 to 2025 the actual data and predicted data comparison is shown in Fig. 1.

From the Table 2 we can know in 2025, the first ten serious water resource shortage provinces are respectively Ningxia, Shanghai, Tianjing, Beijing. Hebei, Jiangsu, Shandong, Henan, Shanxi, Gansu. Prediction results show that the first ten regions is a serious shortage of water resources, which should draw high attention. Liaoning, Guangdong and Inner Mong are in the edge of water resource shortage by compared with the criteria which the per capita water resources of less than 3,000 m<sup>3</sup> is the mild water shortage.

### CONCLUSION AND RECOMMENDATIONS

According to China's 31 provinces and cities in the past nine years (2003-2011 years), Gray prediction model GM (1, 1) is used to predict water amount of China's 31 provinces and cities by 2025 the 14 years (2012-2025 years) and according to the amount of water resources in the shortage of water resources occupancy of the degree of the corresponding ranking, from China's top ten water provinces are respectively Ningxia, Shanghai, Tianjing, Beijing, Hebei, Jiangsu, Shandong, Henan, Shanxi, Gansu. Prediction results show that the ten regions is a serious shortage of water resources, which should draw high attention. Many water resource pans have been proposed (Alipour et al., 2010; Goodman and Edwards, 1992; Chen et al., 2011). According to the results of this study and the practice of China, some policy suggestions are proposed as follows:

- China's coastal cities such as Shanghai, Tianjin using desalination to solve the water shortage problem.
- Raise the price of water to the utilization of water resources in moderation, rational use of water resources and the realization of water resources effective.
- For the region which the water resources reproducible ability is weak, can recycle of water resources and sewage. Urban rainwater collection storage used for urban non-potable water direct water, or used as building inside and outside of the flushing water, green water spray, when necessary,

also for industrial water, in a certain extent can alleviate the pressure of water supply for the city.

- Encourage seawater desalination, rainwater utilization and reuse of wastewater treatment, a city of optimal allocation of water resources and the whole society conservation new situation.
- Precipitation through the construction of reservoirs and dams, artificial recharge of ground measures impoundment to use of water resources.

## REFERENCES

- Alipour, M.H., A. Shamsai and N. Ahmady, 2010. A new fuzzy multicriteria decision making method and its application in diversion of water. Expert Syst. Appl., 37: 8809-8813.
- Chen, V.Y.C., H.P. Lien, C.H. Liu, J.J.H. Liou, G.H. Tzeng and L.S. Yang, 2011. Fuzzy MCDM approach for selecting the best environmentwatershed plan. Appl. Soft Comput., 11: 265-275.
- Cui, X.H., D. Wang, P.F. Zu *et al.*, 2014. AHP assessment model application in water shortage. Math. Pract. Theor., 6: 270-273.
- Deng, J.L., 1989. Introduction of grey system theory. J. Grey Syst. Theor., 1: 1-24.
- Goodman, A.S. and K.A. Edwards, 1992. Integrated water resources planning. Nat. Resour. Forum, 16: 65-70.
- Hsu, C.C. and C.Y. Chen, 2003. Applications of improved grey prediction model for power demand forecasting. Energ. Convers. Manage., 44: 2241-2249.
- Li, G.D., D. Yamaguchi, M. Nagai and S. Masuda, 2008. A prediction model using hybrid grey GM (1,1) model. J. Grey Syst., 11: 19-26.
- Liao, Q., S.F. Zhang and J.X. Chen, 2013. Risk assessment and prediction of water shortages in Beijing. Resour. Sci., 35(1): 140-147.
- Liu, L.P. and D.S. Tang, 2014. Evaluation and coupling coordination analysis on water resources scarcity and social adaptation capacity. J. Arid Land Resour. Environ., 6: 13-19.
- Yi, L.L., W.T. Jiao, X.N. Chen and W. Chen, 2011. An overview of reclaimed water reuse in China. J. Environ. Sci., 23(10): 1585-1593.
- Yin, M.S. and H.W.V. Tang, 2013. On the fit and forecasting performance of grey prediction models for China's labor formation. Math. Comput. Model., 57: 357-365.
- Zhang, C.L., Y.C. Fu, W.B. Zang *et al.*, 2013. A discussion on the relationship between water shortage and poverty in China. China Rural Water Hydropower, 1: 1-4.