Advance Journal of Food Science and Technology 7(9): 709-711, 2015

DOI:10.19026/aifst.7.1632

ISSN: 2042-4868; e-ISSN: 2042-4876 © 2015 Maxwell Scientific Publication Corp.

Submitted: July 24, 2014 Accepted: September [13, 2014 Published: March 25, 2015

Research Article

Effect of Vitamin-B₁ and Vitamin-B₁₂ on the Growth and Carotenoid Content of Haematococcus pluvialis CH-1

¹Li-Xin Li, ¹Zhi-Wei Song, ²Shun-Shan Duan, ¹Ke-Jie Luo, ¹Ting Li, ¹Er-Kui Tang and ¹Oiu-Xu Wang

¹School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China

²Research Center of Hydrobiology, Jinan University, Guangzhou 510632, China

Abstract: An economic microalgae *Haematococcus pluvialis* CH-1 was used as experimental material. An experiment of adding six grades of concentrations of Vitamin- B_1 and Vitamin- B_{12} respectively was conducted. Cell density, carotenoid content was measured. The results showed that the growth of *H. pluvialis* was accelerated significantly by adding of Vitamin- B_1 and Vitamin- B_{12} respectively. The optimal adding concentration of Vitamin- B_1 and Vitamin- B_{12} respectively for *H. pluvialis* was 10000 and 50 μ g/L. Under the optimal concentration for *H. pluvialis*, cells density, carotenoid content were enhanced with Vitamin- B_1 : 20.1 and 21.3%; Vitamin- B_{12} : 29.5 and 24.4% higher than the blank respectively. On the mass culture of motile cells of *H. pluvialis*, properly adding Vitamin- B_1 and Vitamin- B_{12} respectively was effective for increase cells density and carotenoid content.

Keywords: Carotenoid; *Haematococcus pluvialis*; vitamin-B₁; vitamin-B₁₂

INTRODUCTION

Haematococcus pluvialis that belongs to Chlorophata, Chlorophyceae, Volvocales, is a single economic microalgae and accumulates remarkable amounts of natural carotenoid, of which the astaxanthin content is accounting for 80% (Chen and Jiang, 1999; Grung et al., 1992; Lee and Soh, 1991; Lorenz and Cysewski, 2000). The astaxanthin is an excellent feed additive, food colorant and a potential medicine (Miki, 1991; Fukuzawa et al., 1998; Martin et al., 2003; Bjerkeng and Johnsen, 1995). The Chlorophyte alga Haematococcus pluvialis is believed to accumulate the highest levels of astaxanthin in nature (Martin et al., 2003).

It was reported; adding VB_1 , VB_{12} into culture medium can effectively promote the growth of microalgae. Ford (1958) proved there is a close relationship between adding concentration of VB_{12} and cell division rate of *Isochrysis galbana*. Liu *et al.* (2002) pointed out that growth promotion effect is the best for the transgenic Anabaena while adding VB_1 , VB_{12} and VH together. However, it is unknown how to influence on cell density and carotenoid content content of *H. pluvialis* when respectively adding two kinds of Vitamin- B_1 and Vitamin- B_{12} . In this study, the effect of different concentrations of VB_1 and VB_{12} on cell density, chlorophyll-a and carotenoid content of

H. pluvialis was studied and the results may provide the support of theory and technology for the high density cultivation of *H. pluvialis*

MATERIALS AND METHODS

Algal strain, medium and cultivation conditions: Haematococcus pluvialis CH-1 used in the present work was obtained from the Research Center of Hydrobiology of Jinan University (Guangzhou, China), Stock culture of H. pluvialis CH-1 was grown photoautotrophically in BBM medium (Lorenz and Cysewski, 2000) at $24\pm1^{\circ}$ C under 12:12 h photoperiod (60 µmol/ (m².sec) in 25 mL flask. The cells of logarithmic growth phase were inoculated into 150 mL culture medium; inoculation density is $5-10\times10^{3}$ cells/mL.

Experimental design: The experiment was conducted in the two groups, added VB₁ groups and added VB₁₂ groups, each group was divided into 6 concentrations grades treatment, including 3 replicates per treatment (Table 1). The concentration grade of 0 treatments was without any vitamin, which was the blank.

Measure indexes and methods:

Cell density: The sample was measured every 48 h, using hemocytometer counting.

Corresponding Author: Shun-Shan Duan, Research Center of Hydrobiology, Jinan University, Guangzhou 510632, China, Tel./Fax: +86-20-85223192

Table 1: Treatments on three kinds of vitamin with six concentration grades (µg/L)

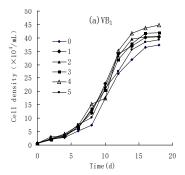
Treatment	Concentration grades					
	0	1	2	2		
Treatment	0	10	100	3	10000	100000
VB_1	0	10	100	1000	10000	100000
VB_{12}	0	0.05	0.5	5	50	500

Chlorophyll-a: According to Bochiroc's method (Jing and Ding, 1981), extraction and measure every 6 days.

Carotenoid content: According to Bochiroc's (Jing and Ding, 1981) method for the extraction and measure of carotenoid.

Data analysis: Analyses were done using the EXCEL program (Microsoft) and the SPSS software package version 11.5 of SPSS Inc. (Chicago, IL, USA.)

RESULTS AND DISCUSSION


Cell density: The results showed that, adding VB_1 and VB_{12} respectively could obviously increase the cell density of H. pluvialis (Fig. 1). In the adding VB_1 test group, the cell density increased with the increase of the adding concentration of VB_1 in 10-10000 $\mu g/L$ (Fig. 1a). When adding concentration was 10000 $\mu g/L$, the cell density were higher than other treatments in the late culture period (12-18 day) and reached 4.48×10^5 cells/mL in the 18^{th} day, enhanced 20.1% than the blank (p<0.05). When adding the concentration was 100000 $\mu g/L$, the cell density was lower than the blank.

In VB $_{12}$ group, cell density increased with the increase of the adding concentration of VB $_{12}$. When adding the concentration was 50 μ g/L, the cell density was the maximum (Fig. 1b) and was significantly higher than other treatments. It reached 4.96×10^5 cells/mL in the 18^{th} day, enhanced 29.5% than the blank (p<0.01). But when the highest concentration (500 μ g/L) was adding, the cell density was lower but still higher than the blank. The optimal concentration of adding VB $_{12}$ was 50 μ g/L.

Carotenoid content: Respectively adding VB₁ and VB₁₂ made the changes of the carotenoid content of *H. pluvialis* (Fig. 2). In VB₁ group, the carotenoid content increased with the increase of VB₁ When adding concentration was 10000 μ g/L, the carotenoid content was highest in all treatments, achieved 4.43 mg/L, enhanced 21.3% than the blank (p<0.05). When adding the concentration was 100000 μ g/L, the carotenoid content was nearly same as the blank (Fig. 2a).

In VB_{12} group, the carotenoid content increased with the increase of the adding concentration, reached maximum 4.53 mg/L at the adding concentration 50 μ g/L, enhanced 24.4% than the blank (Fig. 2b). But when the highest concentration (500 μ g/L) of VB_{12} was added, the carotenoid content was nearly equal to the blank.

H. pluvialis has a complex life-cycle involving several stages from motile flagellated zooids through to

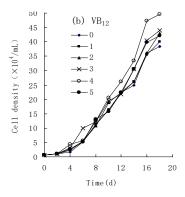
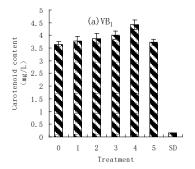



Fig. 1: Effects of vitamin-B₁, vitamin-B₁₂ on cell density of the *H. pluvialis*

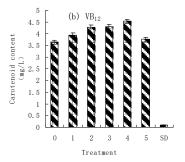


Fig. 2: Effects of vitamin- B_1 , vitamin- B_{12} on carotenoid content of the *H. pluvialis*

palmella and encysted stages. The conditions for the carotenoid production are known to be considerably different from those for the growth of H. pluvialis. Therefore, to obtain high productivity of carotenoidhyper-accumulated H. pluvialis biomass, a two-stage culture system is likely to be more effective (Choi et al., 2002). The first stage is for high-rate growth of green motile cells under optimum conditions. carotenoid is completely absent from the cells. The second stage is for the hyper-accumulation of carotenoid in red cells upon exposure of the cells to growth-limiting conditions, where a morphological and biochemical transformation occurs from green motile cells into inert red cysts. Various factors and methods promoting carotenoid formation have been suggested: high irradiation, nitrogen deficiency, phosphate deficiency, magnesium deficiency, acetate addition, ferrous ion addition and salt addition or high temperature (Harker et al., 1996).

CONCLUSION

In BBM medium added VB_1 and VB_{12} can obviously increase the growth of the H. pluvialis motile cell respectively. Adding VB_{12} can significantly improve the cell density and carotenoid content. The suitable concentration of VB_{12} and VB_1 is different, the optimal adding concentration of Vitamin- B_{12} and Vitamin- B_1 respectively for H. pluvialis was 50 and $10000~\mu\text{g/L}$. Consider the cost of Vitamin and carotenoid content, adding suitable concentration of VB_{12} is more suitable for the commercial production process of natural astaxanthin of H. pluvialis.

ACKNOWLEDGMENT

This study was supported by Key Project of NSFC-Guangdong Joint Fund (U1133003); Natural Science Foundation of China (41176104: 41476099) 51408200); Natural Science Foundation of Heilongjiang province (E201461); Science Technology Research Project of Heilongjiang Province Education Department (12513088 and 12541701); Youngsters Training Program Heilongjiang University of Science and Technology (Q20120201).

REFERENCES

- Bjerkeng, B. and G. Johnsen, 1995. Frozen storage quality of rainbow trout (*Oncorhynchus mykiss*) as affected by oxygen, illumination and fillet pigment. J. Food Sci., 60: 284-288.
- Chen, F. and Y. Jiang, 1999. Microalgae Biotechnology. China Light Industry Press, Beijing, China.
- Choi, Y.E., Y.S. Yun and J.M. Park, 2002. Evaluation of factors promoting astaxanthin production by a unicellular green alga, *Haematococcus pluvialis*, with fractional factorial design. Biotechnol. Progr., 18: 1170-1175.
- Ford, J.E., 1958. B_{12} -vitamins and growth of the flagellate *Ochromonas mathamonsis*. J. Gen. Microbiol., 19: 161-172.
- Fukuzawa, K., Y. Inokami, A. Tokumura, J. Terao and A. Suzuki, 1998. Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and α-tocopherol in liposomes. Lipids, 33: 751-756.
- Grung, M., F.M.L. D'Souza, M. Borowitzka and S. Liaaen-Jensen, 1992. Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S, 3'S)-astaxanthin esters. J. Appl. Phycol., 4: 165-171.
- Harker, M., A.J. Tsavalos and A.J. Young, 1996. Factor responsible for astaxanthin formation in the chlorophyte *Haematococcus pluvialis*. Bioresource Technol., 55: 207-214.
- Jing, J.H. and Z.R. Ding, 1981. Plant Biochemistry Analytical Methods. Science Press, Beijing, China.
- Lee, Y.K. and C.W. Soh, 1991. Accumulation of astaxanthin in *Haematococcus lacustris* (Chlorophyta). J. Phycol., 27: 575 -577.
- Liu, Z.W., C. Zhang and Y. Guo, 2002. Effect of vitamin on culture of recombinant *Anabaena* sp.PCC7120. Acta Hydrob. Sinica, 26: 722-724.
- Lorenz, R.T. and G.R. Cysewski, 2000. Commercial potential for *haematococcus pluvialis* as a natural source of astaxanthin. Trends Biotechnol., 18: 160-167.
- Martin, G., E.H. Mark and O. Miguel, 2003. *Haematococcus astaxanthin*: Applications for human health and nutrition. Trends Biotechnol., 21: 210-216.
- Miki, W., 1991. Biological functions and activities of animal carotenoids. Pure Appl. Chem., 63: 141-146.