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Research Article 

Electronic Nose Monitoring the Maillard Reaction Flavors of Sesame Oil from Different 
Production Processes 

 

Su Dong-Yang, Zhang Gao-Fan, Zhang Yu, Chen Ping, Zhang Yong-Jun, Zhu Li-Yun and Li Jia 
College of Life Sciences, China Jiliang University, P.R. China 

 

Abstract: The objective in this study was to evaluate the capacity of electronic nose to monitoring the effect of 
different Maillard reaction processes on natural flavors of sesame oil, using a specific Electronic Nose device 
(PEN3). The flavors were prepared by Maillard reaction using chemical constituents from water extract of Lentinus 
and other precursors. The optimum conditions of reaction process was determined by using orthogonal test design, 
then an Electronic Nose (PEN3)was used to characterize and classify eight different flavors from different reaction 
process and sesame oil from market. This method firstly sampled aroma composition emanating from the flavors by 
PEN3 systems and then obtained response values of PEN3. Principal Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA) were used in order to investigate whether the electronic nose was able to distinguish 
among different Maillard Reaction Production (MRP). The loadings analysis was used to identify the sensors 
responsible for discrimination in the current pattern file. The results of this study showed that the basic components 

added with lysine, xylose and glycerin, heated in glycerine bath at 140°C for 120 min, was a novel flavors with 
sesame oil flavor and taste. The electronic nose PEN 3 can discriminate successfully different MRPs using both 
PCA and LDA analysis. But, it was not able to detect a clear difference in the sample of similar aroma with sesame 
oil using PCA analysis. Some sensors have the highest influence in the current pattern file for electronic nose PEN 
3. A subset of few sensors can be chosen to explain all the variance. This result could be used in further studies to 
optimize the number of sensors. 
 
Keywords: Electronic nose, linear discriminant analysis, monitoring, principal component analysis, thermal process 

flavors 

 
INTRODUCTION 

 
The electronic noses (e-noses) are analytical 

instruments which are capable to recognize simple or 
complex mixtures of organic vapors after an 
appropriate training period. They are typically array of 
sensors used to detect and distinguish odors precisely in 
complex samples and at low cost (Peris et al., 2009). 
The sensor array consists of broadly tuned (non-
specific) sensors that are treated with a variety of odor-
sensitive biological or chemical materials. An odor 
stimulus generates a characteristic fingerprint (or smell 
print) from the sensor array. Patterns or fingerprints 
from known odors are used to construct a database and 
train a pattern recognition system so that unknown 
odors can subsequently be classified and identified 
(Pearce et al., 2003). The system makes e-noses very 
useful for fast quality control applications in the food 
and chemical industry. Environmental, safe and even 
medical applications are also possible. In fact, in the 
past decade, many established papers have already 
described the use of electronic noses, such as several 
reports on electronic sensing in environmental control, 

medical diagnostics and the food industry (García-
Martínez et al., 2011; Yu and Jun Wang, 2007; Hai and 
Wang, 2006; Schaller et al., 1998) and some authors 
reported positive applications of electronic nose 
technology to the discrimination of different fruits 
quality and many experiments were performed, such as 
testing mandarin (Gomez et al., 2007), peaches (Molto 
et  al.,  1999;  Brezmes  et  al.,  2000), melons (Benady 
et al., 1995), blueberries (Simon et al., 1996), apples 
(Brezmes et al., 2000, 2001; Saevels et al., 2003), pears 
(Oshita et al., 2000; Correa et al., 2001) and bananas 
(Llobet et al., 1999). Often the sensitivity of electronic 
noses is similar to that of human noses but humans are 
specially gifted in sensing specific compounds (e.g., 
thiols, biogenic compounds, pyrazines, thiazoles, some 
aldehydes (Doleman and Lewis, 2001)). The biological 
sensitivity can go down to ppt levels with a response 
time in the order of milliseconds whereas instruments 
barely go under ppb levels with a response time in the 
order of seconds (Table 1) (Ampuero and Bosset, 
2003). 

The Maillard Reaction (MR) or nonenzymatic 
glycation  is  the reaction of reducing sugars with amino  
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Table 1: Detection threshold levels of human olfactory systems and electromic noses 

Volatile compound Reported human threshold (ppm) Electronic nose threshold (ppm) Type of electronic nose 

Ethly acetatea 7-17b 5-25 Fox 3000 (12 MOS) 

Butyric acida 0.4-10b <1 Fox 3000 (12 MOS) 

Diacetyla (4-15)×10-3 b (50-100)×10-3 Fox 3000 (12 MOS) 

n-hexanala (10-50)×10-3 (10-50)×10-3 Fox 3000 (12 MOS) 

Methionala (2-50)×10-3 (10-50)×10-3 Fox 3000 (12 MOS) 

Furanolaa (20-40)×10-6 b (50-100)×10-6 Fox 3000 (12 MOS) 

n-nonanec 0.2-7 <0.2 20 CP composite 

n-octanec 3-9 0.6 20 CP composite 

n-heptanec 7-13 <2 20 CP composite 

n-hexanec 13-30 <10 20 CP composite 

n-pentanec 20-50 40 20 CP composite 

l-pentanolc 0.13-1.3 <0.06 20 CP composite 

l-butanolcc 0.20-1.3 0.3 20 CP composite 

l-butanold 0.70 - Aromascan (32 CP) 

l-butanold  - Fox 3000 (12 MOS) 

l-butanold  + 6 taguchi (SnO2) 

l-propanolc 0.9-1.9 1.3 20 CP composite 

Ethanolc 5-500 2.0 20 CP composite 

Methanolc 13-600 3.0 20 CP composite 

Acetoned 141 - Aromascan (32 CP) 

Acetoned  + Fox 3000 (12 MOS) 

Acetoned  + 6 taguchi (SnO2) 

Ethanethiold 0.1×10-3 - Aromascan (32 CP) 

Ethanethiold  - Fox 3000 (12 MOS) 

Ethanethiold  - 6 taguchi (SnO2) 

 
acids and amino groups of peptides or proteins. This 
reaction produces a variety of early, intermediate and  
advanced compounds. The advanced compounds of 
protein-sugar reactions are referred to as advanced 
glycation end products or AGEs and melanoidins (more 
concrete, melanoproteins) (Chellan and Nagaraj, 1999). 
Highly glycated proteins produced by such reactions 
give rise to fewer safety issues than chemically 
modified food proteins (Pan and Melton, 2007), so the 
glycated proteins through the MR can be added as 
functional ingredients into foods in order to improve 
emulsion and gelation and alter flavor, appearance and 
texture (Honda and Huroda, 1999; Nakamura et al., 
1992). Many studies have reported beneficial effects 
associated with advanced Maillard Reaction Products 
(MRPs), including antioxidative (Chang et al., 2011; 
Gu et al., 2010; Lertittikul et al., 2007; Sun et al., 
2004), antimicrobial (Sant'Anna et al., 2011; Li et al., 
2011; Rufián-Henares and Morales, 2006, 2008), 
antihypertensive (Rufián-Henares and Morales, 2007a, 
b and c), anticarcinogenic and antimutagenic properties 
(Kolpe et al., 2002; Yen and Tsai, 1993). 

The Maillard reaction, a well-known non-
enzymatic browning reaction involving a reducing 
sugar and an amino acid, may produce colored or 
colorless reaction products depending on the stage of 
the reaction as well as other factors such as pH, type of 
reactants, temperature, water activity, etc. Condensation 
reactions between amino acids and lipid oxidation 
products may also form MRP and the role of lipids in 
the Maillard reaction is similar to the role of reducing 
sugars (Hidalgo and Zamora, 2000). A group of 
compounds in the final products of the reaction includes 
high molecular weight melanoidins, which are furan 
ring and nitrogen containing brown compounds. Little 
is known about their physical, chemical and 

physiological properties because of their complex 
structures. This complexity in MRP structures limits the 
determination of antioxidant activity for each 
compound in the whole group of MRP. 

Sesame oils have a mild odor and a pleasant taste 
and, as such, is a natural salad oil requiring little or no 
winterization. It is used as a cooking oil, in shortening 
and margarine, as a soap fat, in pharmaceuticals and as 
a synergist for insecticides (Ampuero and Bosset, 
2003). It is very popular as cooking oil in many Asian 
countries and more expensive than other edible 
vegetable oils. Sesame oils are non-water soluble; 
therefore have limitations in application of food 
industry. The objectives in this study were:  

 

• To prepare the flavors with sesame oil by Maillard 
reaction using chemical constituents from water 
extract of Lentinus and other precursors 

• To evaluate the capacity of the electronic nose for 
monitoring the flavors with sesame oil, using a 
specific Electronic Nose device (PEN 3) based on a 
10-sensor array and suitable pattern recognition 
techniques 

• To study Principal Component Analysis (PCA) and 

Linear Discriminant Analysis (LDA) techniques to 

obtain whether the electronic nose would be able to 

distinguish different aroma 

• To identify each sensor responsible for 

discrimination in the current pattern file, using 

loading analysis 
 

MATERIALS AND METHODS 
 
Materials: Lentinus edodes fruitbody obtained from 
Hangzhou  City  Huadan  Agricultural Products Limited  
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Table 2: Factors and levels for orthogonal test 

Variable 

Level 

-------------------------------------------- 

1 2 3 4 

A, reaction time/min 100 120 140 160 

B, reaction temperature/°C 140 160   

C, moisture content/% 35 45   
D, pH 6 7   

E, absolute alcohol/day 5 10   

 
Company. Xylose, lysine and the other 
solvents/chemicals used were of analytical grade and 
obtained from Shanghai Chemical Reagent Co., Ltd. 
(Shanghai, China). 
 
Preparation of Maillard Reaction Products (MRPs): 
Lentinus edodes fruitbody (100 g) was homogenized in 
3000 mL of distilled water. The homogenate was stirred 
for 2 h at 60°C and then filtered through Whatman No. 
1 paper. The filtrate was concentrated to 400 mL using 
a rotary evaporator at 60°C under low pressure and 
obtained Lentinus Edodes Extract (LEE). Xylose and 
lysine were mixed (1:1 ratio) and dissolved in LEE and 
adjusted pH with 0.5 mol/L citric acid solution. The 
substrate concentration was adjusted to 35 and 45% 
(w/v) with glycerol. The solution was transferred to a 
250 mL three-neck round-bottom flask and heated 
under refluxing in an oil bath with magnetic stirring at 
40 rpm. The reaction  conditions  were showed  at 
Table 2. An orthogonal L8 (4×2

4
) test design in the 

Maillard reaction mode was used for optimization the 
reaction conditions. After heating, the sample was 
immediately placed in an ice bath to cool down. The 
heated mixtures were termed as Maillard Reaction 
Products (MRPs).  

 

Sensory evaluation: Sensory evaluation was 

performed in the Department of Food Science at the 

China JiLiang University (Hangzhou, Zhejiang). MRPs 

sample of 0.5 mL was diluted with 50 mL of de-ionised 

water. In preparation for the sensory evaluation, MRP 

diluents were individually presented in covered small 

porcelain tubes to each panelist. The judges were not 

informed of the experimental approach and the samples 

were blind-coded with random numbers. Panelists were 

instructed to smell the MRP diluents and pause for 30 s 

between samples. A 10-point hedonic scale, from 9 

(excellent,  extremely  acceptable) to 0 (poor, extremely  

unacceptable), was employed to evaluate each MRP 

diluent sample on flavor. The sensory attributes of 

MRP diluent were compared with those of the 

commercial sesame oil products (Taitaile purchased 

from Wumei supermarket). MRP diluent samples 

receiving overall scores of more than 4 were considered 

acceptable, while a score between 3 and 4 was 

considered the borderline of acceptability. The overall 

acceptance of the MRP diluents was also evaluated by 

those consumers using a 10-point hedonic scale. At 

least 20 panelists participated in this study. 

 

Electronic nose data acquisition and analysis: 

Experiments were performed with a Portable E-Nose 

(PEN 3) operating with the Enrichment and Desorption 

Unit (EDU). The system was from Win Muster 

Airsense (WMA) Analytics Inc. (Schwerin, Germany). 

PEN 3 consists of a sampling apparatus, a detector unit 

containing the array of sensors and pattern recognition 

software (Win Muster v.1.6) for data recording. The 

sensor array is composed of 10 different Metal Oxide 

Semiconductor (MOS) type chemical sensor: MOS1 

(aromatic), MOS2 (broad range), MOS3 (aromatic), 

MOS4 (hydrogen), MOS5 (arom-aliph), MOS6 

(broadmethane), MOS7 (sulphur-organic), MOS8 

(broad-alcohol), MOS9 (sulph-chlor), MOS10 

(methane-aliph). In Fig. 1 shows schematic diagram of 

the electronic-nose measurements and gas flow of PEN 

3 during the experiments.  

Table 3 lists all used sensors and their main 

applications. This table contains current known or 

specified reaction. 

Each sample was placed into an airtight glass tube 

with a volume of 50 mL (concentration chamber). The 

glass tube was then closed and the headspace inside it 

was equilibrated for 1 h. Preliminary experiments 

showed that after 0.5 h of equilibration the headspace 

reached a steady state and experiments were conducted 

after 0.5 h of equilibration. One luer-lock needle (20 g) 

connected to a Teflon-tubing (3 mm) was used to 

perforate the seal (plastic) of the vial and to absorb the 

air accumulated inside it, during the measurements. The 

sample gas was inhaled into the sensor chamber (whose 

volume was about 150 mL) by pump 1 through the inlet 

at a rate of 400 mL/min. After that, zero gas (air

 

 
 

Fig. 1: Gas-flow diagrams of the electronic nose 
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Table 3: Sensors sensitivity of individual sensors within the sensor array of the PEN 3 e-nose 

Number in array Sensor-name General description Reference 

1 W1C Aromatic compounds Toluene, 10 ppm 

2 W5S Very sensitive, broad range sensitivity, react on nitrogene oxides, very sensitive 

with negative signal 

NO2, 1 ppm 

3 W3C Ammonia, used as sensor for aromatic compounds Benzene, 10 ppm 

4 W6S Mainly hydrogen, selectively, (breath gases) H2, 100 ppb 

5 W5C Alkanes, aromatic compounds, less polar compounds Propane, 1 ppm 

6 W1S Sensitive to methane. Broad range, similar to No. 8 CH3, 100 ppm 

7 W1W Reacts on sulfur compounds, H2S 0.1 ppm. Otherwise sensitive to many terpenes 

and sulfur organic compounds, which are important for smell, limonene, pyrazine 

H2S, 1 ppm 

8 W2S Detects alcohol’s, partially aromatic compounds, broad range CO, 100 ppm 

9 W2W Aromatics compounds, sulfur organic compounds H2S, 1 ppm 

10 W3S Reacts on high concentrations >100 ppm, sometime very selective (methane) CH3, 10 CH3, 100 ppm 

 

filtrated by active carbon) was pumped by pump 2 from 

its port at the backside of the instrument into the 

electronic nose at a rate of 600 mL/min. A part of the 

zero gas was sucked into the sensor chamber by pump 1 

to flush the sensors at the rate of 400 mL/min. The rest 

of the zero gas was expelled from the inlet to rinse the 

sample line at a rate of 200 mL/min. Since the property 

of the sensors would change as time goes by, the ethyl 

acetate was used as a calibration gas, which should be 

inhaled into the sensor chamber periodically to 

supervise the aging procedure of the sensor array. The 

operation temperature of the sensors was 300°C and the 

interior temperature of the cavity was 110°C. The 

schematic diagram of this electronic nose system is 

shown in Fig. 1. 

When a measurement is completed, a stand-by 

phase is activated (60 sec). The purpose is to clean the 

circuit and return sensors to their baseline. Clean air 

enters the circuit, crosses the measurement chamber 

first, the empty concentration chamber afterwards and 

pushes the remaining volatiles out of the circuit. 

Sensors were held at the temperature of 20°C and 

50-60% RH during all experiments, the temperature 

was maintained constant with an accuracy of ±1°C. 

When the sensors are exposed to volatiles, the computer 

records the resistance changes that the sensors 

experience during the measurement phase. When the 

measurement was completed, the acquired data was 

properly stored for later use. The set of signals of all 

sensors during measurement of a sample is a pattern. 

Pattern of multiple measurements dealing with the same 

problem are stored in a Pattern File and act as the 

Training Set. The pattern data were recorded, checked 

visually and analyzed using SAS 8.0. 

By using this zero-gas and comparing it to the 

signals from the analyzed sample gas the effect of the 

possible drift of the sensor itself is reduced (differential 

measuring technique). With the zero-gas the sensor 

array is kept clean to achieve a long lifetime and 

stability. 

 

Electronic nose measurement: The temperature of the 

tubes was set at 40°C by a thermostatic bath and after a 

headspace generation time of 0.5 h, the samples were 

injected in a random order. The measurement time was 

60 sec and upon injecting the sample, data were 

acquired every second. The flushing time was 300 sec 

and that was enough to desorb the volatiles from the 

sensors and enable the signals to return to the baseline. 

Since the conductivity of the sensors will change as 

the sample gas blows over, the data obtained are the 

changing ratio of conductivity between G and G0 (the 

conductivity of the sensors when the sample gas or zero 

gas blows over). As the sample gas of the headspace is 

pumped away and the air pressure in the vial dropped 

down, the signal reverted to the baseline gradually.  

It is important to notice that the signals changed as 

time went on. That is the result is not only from 

variation of volatiles in the headspace but also from the 

variation of air pressure. Since the procedure of 

sampling was the same all the time, as for the same 

samples, the signals have no significant difference at 

the same time point. As the sample gas in the headspace 

was pumped out, the air pressure of the vials dropped 

down. Thus, more volatiles were expected to evaporate 

into the headspace. And then we could check the 

discriminating capability of the electronic nose under 

different condition of air pressure. 

 

Principal component analysis, linear discriminant 

analysis and loadings analysis: Pattern recognition 

algorithms and data processing techniques are a critical 

component in the implementation, development and 

successful commercialization of Electronic Nose (EN) 

systems. There are a large amount of pattern 

recognition techniques available. In order to select the 

appropriate pattern recognition algorithm for EN 

application, it is important to understand the 

fundamental nature of the data being analyzed. 

Statistical and non-parametric analysis techniques are 

the most known and commonly used to analyze EN 

data. 

Classical statistical methods, using a probability 

model, were first developed and used in the field of 

applied mathematic, now called chemometrics. Several 

mathematical methods could be applied to the multi-

component analysis of odors. Categorization of 

classifiers, can be made based on certain features, such 
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as supervised or unsupervised, model based on model-

free and qualitative or quantitative analysis. 

Discriminant Function Analysis (DFA) is a parametric 

learning classifier, which can be used for both 

qualitative and quantitative analysis. There are many 

ways of performing DFA, but the classical approach is 

Loading Discriminant Analysis (LDA). Principal 

Components Analysis (PCA) is a non-parametric 

projection method and pattern recognition technique 

used for analyzing, classifying and reducing the 

dimensionality of numerical datasets in a multivariate 

problem and is often used to implement a linear 

supervised classifier, in conjunction with discriminant 

analysis. This method permits extraction of useful 

information from the data and exploration of the data 

structure, the relationship between objects, the 

relationship between objects and variables and the 

global correlation of the variables. The main features of 

PCA are the coordinates of the data in the new base 

(scores plot) and the contribution to each component of 

the sensors (loads plot). The score plot is usually used 

for studying the classification of the data clusters, while 

the loads plot can provide information on the relative 

importance of the array sensors to each principal 

component and their mutual correlation. This technique 

has been widely used for researcher to display the 

response of an EN to simple and complex odors and it 

provides qualitative information for EN pattern 

recognition file. 

Using the Principal Component Analysis (PCA) 

the measured data, previously trained will be 

transformed into 2D or 3D coordinates. This is carried 

out through the data reduction that extracts the most 

important information from the database as a result. 

The results of training phase can be displayed in a two 

dimensional view. PCA is based on a linear project of 

multidimensional data into different coordinates based 

on maximum variance and minimum correlation. 

Training pattern from measurements of similar samples 

will be located close to each other after transformation. 

Hence, the graphical output can be used for determining 

the difference between groups and comparing this 

difference to the distribution of pattern within one 

group. 

The Linear Discriminant Analysis (LDA) is the 

first step of the Discriminant Function Analysis (DFA). 

The LDA calculates the discriminant functions and is 

similar to the PCA-a 2 or 3 dimensional display of the 

training set data. The difference between PCA and 

LDA is that PCA does not consider the relation of a 

data point to the specified classes, while the LDA 

calculation uses the class information that was given 

during training. The LDA utilizes information about the 

distribution within classes and the distances between 

them. Therefore, the LDA is able to collect information 

from all sensors in order to improve the resolution of 

classes. 

The loadings analysis is well correlated to the 

PCA. Using this analysis, the sensors can be 

investigated for their responsibility for the 

discrimination given by the trained patterns. Sensors, 

located near the center of the diagram (0, 0), have a 

minor responsibility for the distribution of pattern in the 

PCA plot. They may be switched off because they may 

have a negative influence on the pattern resolution, 

when particular normalizations are selected. The 

loadings analysis helps to identify the sensor 

responsible for discrimination in the current pattern file. 

The sensor may be switched off (the response signal not 

used) for analysis if it has no positive influence on the 

identification process. 

The sum of displayed variances is higher; the 

further principal components also contain discriminant 

information using PCA and LDA. 

The loadings analysis is well correlated to the 

PCA. Using this analysis the sensors can be 

investigated for their responsibility for the 

discrimination given by the trained patterns. Sensors, 

located near the center of the diagram (0, 0) have a 

minor responsibility for the distribution of pattern in the 

PCA plot. They may be switched off because they may 

have negative influence on the pattern resolution, when 

particular normalizations are selected. The Loadings 

analysis will help to identify the sensors responsible for 

discrimination in the current pattern file. Single sensors 

may be switched off for analysis as long as they have 

no positive influence on the identification process. 

 

RESULTS 

 

Analysis of the orthogonal test: To the best of our 

knowledge, various parameters play a great role in the 

optimization of the experimental conditions for the 

development of a Maillard reaction method. Reaction 

time, reaction temperature, moisture content, pH, 

number of absolute alcohol are generally considered to 

be the most important factors that (to) affect the flavor 

of MRP. The investigated levels of each factor were 

selected depending on the preliminary experiment 

results of the single-factor. In the present study, all 

selected factors were examined using an orthogonal L8 

(4×2
4
) test design. The total evaluation index was used 

to analysis by statistical method (Table 4). The analysis 

results of orthogonal test, are presented in Table 2. In 

the orthogonal test, k is the sum of score of every level 

and by comparing to k, the optimal level of variables 

can be confirmed. R = max {k1, k2, ..., kn} - min {k1, 

k2, ..., kn} and R scales the effect of variables on the 

result. High R value of variable means that this variable 

has strong effect on the result. Although the maximum 

score of MRP was 7.80±0.37, we cannot choose the 

corresponding reaction conditions as the best 

technology. In view of orthogonal analysis, we adopt 

statistical software to calculate the values of K, k and R.
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Table 4: Analysis of L8 (4×24) test results 

No. 
A, reaction time 
/min 

B, reaction 

temperature /°C 
C, moisture 
content /% D, pH 

E, absolute 
alcohol/day Score 

1 1 (100) 1 (140) 1 (35) 1 (6) 1 (5) 5.60±0.31 
2 1 (100) 2 (160) 2 (45) 2 (7) 2 (10) 6.20±0.28 
3 2 (120) 1 (140) 1 (35) 2 (7) 2 (10) 7.30±0.45 
4 2 (120) 2 (160) 2 (45) 1 (6) 1 (5) 7.80±0.37 
5 3 (140) 1 (140) 2 (45) 1 (6) 2 (10) 6.90±0.41 
6 3 (140) 2 (160) 1 (35) 2 (7) 1 (5) 5.30±0.19 
7 4 (160) 1 (140) 2 (45) 2 (7) 1 (5) 5.80±0.33 
8 4 (160) 2 (160) 1 (35) 1 (6) 2 (10) 4.90±0.26 
k1 5.90 6.40 5.78 6.30 6.12  
k2 7.55 6.05 6.68 6.15 6.32  

k3 6.15      
k4 5.35      
R 2.20 0.35 0.90 0.15 0.20  

R: The result of extreme analysis 

 

 
 
Fig. 2: Ten sensors responses to sesame oil aroma 

 
The factors influence the score of MRP were listed in a 
decreasing order as follows: A>C>B>E>D according to 
the R value. So the maximum score of the MRP was 
obtained when reaction time, reaction temperature, 
moisture content, pH, number of absolute alcohol were 

A2C2B1E2D1 (120 min, 45%, 140°C, 10 day and pH 6), 
respectively. According to the R value and the result of 
analysis of variance table (data not shown), we can find 
the reaction time was found to be the most important 
determinant of the score of MRP. However, two levels 
of four other factors can be overlooked in the score. In 
order to save the cost of production and time for 
industrialization, we make the optimum technology as 

follows: A2C2B1E1D2 (120 min, 45%, 140°C, 5 day and 
pH 7). Through confirmatory test, we get the high score 
of MRP, with a score of 7.93±0.27%. 
 
Electronic nose response to MRP aroma: Figure 2 
shows a typical response of ten sensors during 
measuring sesame oil. Each curve represents a different 
sensor transient. The curves represent sensor 
conductivity of one sensor of array against time due to 
electro-valve action when the volatiles from the sesame 
oil reach the measurement chamber. In that transition, 
the clean airflow reached the measurement chamber is 
substituted by airflow, which comes from the 
concentration chamber, closing a loop circuit between 
both chambers. It can be seen that, after an initial period 

of low and stable conductivity (when only clean air is 
crossing the measurement chamber), conductivity 
increases sharply and then stabilizes after 30 sec. The 
each sensor signal generally stabilizes and was 
considered to use in analysis of electronic nose. In this 
research, the signal of each sensor at response 47 sec 
was used in analysis of electronic nose.  

Figure 3 shows the response value of each sensor 
in Cartesian coordinate for an example at 47 sec. As the 
first example, the polar graphs of the responses of the 
sensors to the 8 group samples of Maillard reaction and 
sesame oil are shown in Fig. 3. These graphs were 
constructed using the changes of relative resistance and 
representing the peak height of each sensor as a radial 
vector. The response of the sensors was highly 
reproducible. Each formula (with different MRP) 
produced similar radar chart shapes (Fig. 3 (1 to 8)), 
which were clearly similar shape (Fig. 3 (9)) from 
sesame oil, particularly Fig. 3 (3 and 4) which the 
highest score from the orthogonal test. The analysis for 
sesame oil and different MRP showed that all the ten 
sensors had a clear response, particularly the 2

th
 sensor 

(sensitive to nitrogene oxides), the 6
th

 sensor (sensitive 
to broad-methane) and the 8

th
 sensor (sensitive to 

broad-alcohol). While, it was hard to discriminate 
MRPs from sesame oil on radar maps, which indicated 
that it was necessarily aid to PCA or LDA to classify 
these formulas. 
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                                (d)                                                                (e)                                                                  (f) 

 

 
 
                                  (g)                                                              (h)                                                             (i) 

 

Fig. 3: Radar maps of sesame oil and different MRP by PEN3 electronic nose at the 47rd second 

 

Classification of MRPs using PCA and LDA: In 

order to investigate whether the electronic nose was 

able to distinguish among different process, PCA and 

LDA analysis were applied in this study. The analysis 

was carried out using the signal stability at 47 sec in 

sesame oil. 

PCA and LDA analysis results are shown in Fig. 4 

and 5. Two figures show that analysis results on a two-

dimensional plane, Principal Component 1 (PC1) and 

Principal Component 2 (PC2) in Fig. 4 and first and 

second linear discriminant LD1 and LD2 in Fig. 5. 

PCA is a linear combinatorial method, which 

reduces the complexity of the data-set. The inherent 

structure of the dataset is preserved while its resulting 

variance is maximized. PCA has been performed to 

describe the aroma changes for different reaction 

process. Figure 4 shows that the score plot inside the 

rotundity and represent the variation around each 

process data (Maillard reaction) in the space. The 

processed data shows a shift erratic of the different 

process date along the first principal component, PC1, 

which explains 92.94% of the total variance with value 

99.79%. The second Principal Component (PC2) 

explains 6.85% of the variation and shows no particular 

trend with reaction process date. There were a clear 

separation between the 3
rd

 samples, the 4
th

 sample, the 

sesame oil with other groups of samples, showed that 

this two samples had the similar aroma with sesame oil. 

In spite of the clear separation that was achieved among 

different groups using the Analysis (PCA), this two
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Fig. 4: PCA analysis for MRPs 

 

 
 
Fig. 5: LDA analysis for MRPs 

 
groups of the 3

rd
 samples and the 4

th
 sample overlap 

each other. The system has not enough resolution to 

different Maillard reaction process. 

When the LDA analysis (Fig. 5), using the same 

data of nine groups (Maillard reaction process and the 

sesame oil date), the MRPs were distinguishable from 

each group. In this plot about 96.98% of the total 

variance of the data is displayed. LDA function 1 (LD1) 

and function 2 (LD2) accounted for 91.55 and 5.42% of 

the variance, respectively. In spite of the clear location 

among all the classes by Maillard reaction using the 

analysis (LDA), but a small overlap joint was achieved
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Fig. 6: Loading analysis related to PC1 and PC2 for the total variance in 99.79% 

 
between the 2

nd
 group, the 4

th
 group and the 5

th
 group, 

meaning that this three groups of Maillard reaction 

production do not differ much. This may be the reason 

that the score was approximative by organoleptic test. 

 
Loading analysis: The loading analysis will help to 

identify the important of sensors responsible for 

discrimination in the current pattern file. Single sensors 

may be switched off for analysis if they have rather 

smaller influence on the identification process. Sensors 

with loading parameters near to zero for a particular 

principal component have a low contribution to the total 

response of the array, whereas high values indicates a 

discriminating sensor. 

The loading analysis was performed, a loading plot 

of the loading factors associate to PC1 and PC2 for 

MRPs shown in Fig. 6. It was also shown that the 

relative importance of the sensors in the array. The 

loading factor associates to first and second principal 

components for each sensor is represented. There are 

sensor groups that have almost identical loading 

parameters and they might be represented by just one 

sensor. Figure 6 shows that the sensors 2, 6 and 8 have 

higher influence in the current pattern file, while the 

sensors 1, 3, 4, 5, 7, 9 and 10, respectively have low 

influence. This is identical with the result in Fig. 3. The 

sensors 4, 7, 9 and 10, respectively have similar loading 

factor and so could be represented by just one sensor.  

Sensors with loading parameters near to dilution 

factor for a particular principal component have also a 

low contribution to the total response of the array. 

Hence, nearly a subset of few sensors can be chosen to 

explain all variance. This result could be used in further 

studies to optimize the number of sensors. 

 

CONCLUSION 

 

Optimum process of Maillard reaction with the 

natural flavors of sesame oil was as follow, the basic 

components added with lysine, xylose and glycerin, 

heated in glycerine bath at 140°C for 120 min, was a 

novel flavors with sesame oil flavor and taste. The 

obtained results prove that the electronic nose PEN 3 

based on 10 metal oxide semiconductor sensors can 

differ successfully the MRPs with flavors of sesame oil 

and have been demonstrated that electronic nose 

technology has excellent sensitivity and selectivity for 

differentiating the MRPs. Principal component analysis 

and linear discriminant analysis were used to 

investigate whether the electronic nose was able to 

distinguishing among different the MRPs. The loadings 

analysis was used to identify the sensors responsible for 

discrimination in the current pattern file. The results 

prove that the electronic nose was not able to detect a 

clear difference in the similar aroma with sesame oil of 

the 3
rd

 and the 4
th

 sample using PCA analysis, but it 

achieves a clear separation in this two samples using 

LDA analysis.  

Sensors 2, 6 and 8 have the highest influence in the 

current pattern file. Hence, nearly a subset of few 

sensors can be chosen to explain all the variance. This 

result could be used in further studies to optimize the 

number of sensors. 
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