Research Article
 Optimization for Brewing Technology of Jujube Brandy Using Response Surface Methodology

Yanan Xia, Lijuan Hou, Yanli Ma and Jie Wang
College of Food Science and Technology, Agricultural University of Hebei, Baoding 071000, China

Abstract

In order to obtain a proper brewing method of jujube brandy, one-factor experiment and response surface methodology were applied to get the maximum alcohol content. Using single-yeast GH and fermentate at $28^{\circ} \mathrm{C}$ for 20d was suggested by one-factor test. The use of a central composite design and the response surface methodology to determine the best conditions allows the optimum combination of analytical variables (yeast strains, fermentation temperature and time) to be identified: single-yeast GH , fermentation temperature of $18^{\circ} \mathrm{C}$, fermentation time of 24 d and the alcohol content was $38.7 \% \mathrm{vol}$, almost accords with the predicted data. The optimized process improved the mellow flavor of jujube brandy, which has great practical values.

$\underline{\text { Keywords: Alcohol, flavor compounds, jujube brandy, one-factor tests, response surface method }}$

PRACTICAL APPLICATIONS

Jujube output increases rapidly in China, Hebei is a major produce place of jujube, but the development of jujube brandy in trade market is restricted severely because of lacking mature production technology. The present study provides a proper brewing method for jujube brandy. The results indicated that the fermentation temperature and time have more significant effect on quality of jujube brandy than yeast strains. The new fermentation process was feasible for brewing jujube brandy with higher alcohol content and richer flavor compounds, which would be helpful to brew other brandy products.

INTRODUCTION

Jujube brandy, a unique brandy product in China, has a long history. Jujube brandy is produced by solid fermentation, distillation and aging using Chinese jujube as raw material. However, since mature production technology is lacking, development of jujube brandy in trade market is restricted severely, it cannot be produced as a standardized commodity.

Jujube is one of the characteristic fruit in China. The total cultivating area of jujube in China has reached 3200000 hectares by 2012, with annual output of 4.683 million tons. Hebei is a major produce place of jujube, but the development of processing technology and high value-added products need to be improved. Studies have shown that jujubes are rich in sugar and contain
similar components as grapes, which means jujube are proper to produce brandy (Claus and Berglund, 2005; Li et al., 2007).

Fermentation conditions are the decisive factor of quality and flavor of liquor (Jackson, 2002). The main factors influencing the liquor aroma components include yeast strains, fermentation temperature and time (Rapp, 1998). In western countries, brandy is produced with grape juice or hide trimmings and different kinds of yeasts (Jiming and Puchao, 2004; Jijun et al., 2005). Britain liquor brewster think that the best temperature for brewing fruit wine is between $22-25^{\circ} \mathrm{C}$, because low fermentation temperature could reduce the generation of higher alcohols (Huafeng et al., 2003). But for the French and German winemaker, $15-18^{\circ} \mathrm{C}$ is considered the best temperature for fermentation for a long time (Qianwen and Zhengjun, 2000). Daqu and solid-state fermentation are characteristic of Chinese traditional liquor production techniques (Zheng et al., 2011; Berradre et al., 2009; Zhang et al., 2013) and have recently been used in the brewing of fruit wine, bringing unique flavors and improving the quality of production (Chang et al., 2014; Fan and Qian, 2005). Most white wines in China have long fermentation time at the temperature of $25-30^{\circ} \mathrm{C}$, maybe as long as 3 months (Fan and Qian, 2006; Zhu et al., 2007; Luo et al., 2008; Fan et al., 2011).

In this study, yeast strains, fermentation temperature and time were selected for one-factor experiment, then the response surface analysis test was

[^0]performed to get the optimal fermentation parameters, which would obtain higher quality jujube brandy.

MATERIALS AND METHODS

Samples:

Jujube: Dried Ziziphusjujube (Hebei, Fuping).

Brewing process of jujube brandy:

- Add equal water to shredded jujube, soak 5-6 h.
- Boil, add $1 / 6$ rice hull after cooling.
- Take 1.5% yeast or Jiuqu in 100 mL of 2% glucose water, $40^{\circ} \mathrm{C}$ water baths for 30 min . Inoculate activated yeast or Jiuqu.
- Solid-state fermentate, then distill, store.

Alcohol test: Alcohol content is tested with alcohol meter. All of the analyses were performed three times.

SPME-GC-MS parameters: Jujube brandy was diluted to 10% alcohol content by distilled water. 1 g NaCl was added to 7.5 mL of sample solution in a 20 mL sealed glass vial. Flavor compounds were exacted at $40^{\circ} \mathrm{C}$ for 40 min with $50 / 30 \mu \mathrm{~m}$ DVB/CAR/PDMS fiber, then used to GC-MS analysis.

Flavor compounds of jujube brandy were detected by GC-MS (Agilent 5975 Mass Spectrometer coupled to an Agilent 7890A Gas Chromatograph, DB-WAX column, $60 \mathrm{~m} \times 0.25 \mathrm{~mm}$ ID and $0.25 \mu \mathrm{~m}$ film thickness, USA). The injector temperature was $250^{\circ} \mathrm{C}$, EI source was $230^{\circ} \mathrm{C}$, MS Quad was $150^{\circ} \mathrm{C}$ and transfer line was $250^{\circ} \mathrm{C}$. The initial temperature was $50^{\circ} \mathrm{C}$ for 3 min , which was increased to $80^{\circ} \mathrm{C}$ at a rate of $3{ }^{\circ} \mathrm{C} / \mathrm{min}$. The temperature was further raised to $230^{\circ} \mathrm{C}$ at $5^{\circ} \mathrm{C} / \mathrm{min}$ and maintained at $230^{\circ} \mathrm{C}$ for 6 min . The carrier gas had a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$. Samples were injected using the splitless mode. A mass range of $50-550 \mathrm{~m} / \mathrm{z}$ was recorded at one scan per second.

Table 1: Independent variables and their levels used in the response

surface design			
Level	X_{1} (Yeast strains)	X_{2} (Temperature $/{ }^{\circ} \mathrm{C}$)	X_{3} (Time/d)
-1	Single-yeast	18	8
0	Mixd-yeast	24	16
1	Jiuqu	30	24

Qualitative and quantitative analysis: Flavor compounds were identified by Nist 2005 library of GCMS. The contents of flavor compounds were quantified using an internal standard (3-octanol, 99\%, SigmaAldrich).

$$
\mathrm{m}_{\mathrm{i}}=\left(\mathrm{f}^{*} \mathrm{~A}_{\mathrm{i}}\right) /\left(\mathrm{A}_{\mathrm{s}} / \mathrm{m}_{\mathrm{s}}\right), \mathrm{f}=\left(\mathrm{A}_{\mathrm{s}} / \mathrm{m}_{\mathrm{s}}\right) /\left(\mathrm{A}_{\mathrm{r}} / \mathrm{m}_{\mathrm{r}}\right)
$$

$\mathrm{m}_{\mathrm{i}}, \quad \mathrm{m}_{\mathrm{s}}, \mathrm{m}_{\mathrm{r}}$ represent contents of determinand, internal standard, contrast, $\mathrm{A}_{\mathrm{i}}, \mathrm{A}_{\mathrm{s}}, \mathrm{A}_{\mathrm{r}}$ represent peak area or peak height of determinand, internal standard, contrast, f represent correction factor.

Experimental: Six kinds of yeast strains (single-PH, PZ, GH, SX, mixed-GS, HGS, Anqi yeast company, China), 5 kinds of Jiuqu (N, J, Q, AQ and ZJ, Anqi yeast company, China), fermentation temperature (15, $\left.18,24,28,32^{\circ} \mathrm{C}\right)$, fermentation time $(6,10,14,20,24$, $28 d)$ was performed as one-factor test.

Box-Behnken design: Based on one-factor test, a BoxBehnken Design (BBD) with three independent factors (X_{1}, yeast strains; X_{2}, fermentation temperature; X_{3}, fermentation time) set at three variation levels was implemented (Table 1). And $+1,0,-1$ encoded factors represent variables (Ni and Zeng, 2010). The alcohol content of jujube brandy was selected as the responses for the combination of the independent variables (Table $2)$.

RESULTS AND DISCUSSION

One-factor test results:

Yeast strains: Besides ZJ Jiuqu, alcohol of jujube brandy maintain between 33 to 36% vol. Jujube brandy

Table 2: Variable levels and responses of flavor content based on yeast, fermentation temperature and time

Run	Yeast strains (X_{1})	Temperature ($\mathrm{X}_{2} /{ }^{\circ} \mathrm{C}$)	Time ($\mathrm{X}_{3} / \mathrm{d}$)	Observed ($\mathrm{Y}_{0} / \% \mathrm{vol}$)	Predicted (Y/\%vol)
1	3	18	16	33.4	33.45
2	2	24	16	34.4	35.74
3	2	24	16	36.6	35.74
4	2	30	24	36.6	36.69
5	2	24	16	36.2	35.74
6	2	18	24	38.0	38.21
7	1	24	24	38.8	38.76
8	2	24	16	35.3	35.74
9	3	24	24	37.2	36.94
10	2	24	16	36.2	35.74
11	3	30	16	34.6	34.77
12	3	24	8	36.0	36.04
13	1	24	8	35.5	35.76
14	1	30	16	33.2	33.15
15	2	18	8	35.9	35.81
16	2	30	8	35.4	35.19
17	1	18	16	36.8	36.63

Fig. 1: Influence of yeast and Jiuqu on the alcohol of jujube brandy

Fig. 2: Influence of fermentation temperature on the alcohol of jujube brandy

Fig. 3: Influence of fermentation time on the alcohol of jujube brandy
fermented with single-yeast PH and mixed-yeast GHSX have higher alcohol than others (Fig. 1). Therefore, single-yeast GH, PH and mixed-yeast GHSX are proper yeast strains for brewing jujube brandy.

Fermentation temperature: Significant difference of alcohol appeared with different fermentation temperatures $(\mathrm{p}<0.05)$. Jujube brandy got the highest
alcohol at $28^{\circ} \mathrm{C}$, then at $18^{\circ} \mathrm{C}$, the least at $15^{\circ} \mathrm{C}$ (Fig. 2). Therefore, the proper temperature for brewing jujube brandy is $28^{\circ} \mathrm{C}$.

Fermentation time: Significant difference of alcohol also appeared with different fermentation time ($\mathrm{p}<0.05$). Jujube brandy got the highest alcohol at 6 d , then decreased gradually, which means jujube brandy got fully fermentation during 6d, then went on flavor generation reaction (Fig. 3). Therefore, although alcohol fermentation finish at 6 d , for obtaining high-quality-flavor jujube brandy, 20d should be chosen to be the proper fermentation time.

Box-Behnken result:

Statistical analysis and model building: Seventeen tests were complemented as Box-Behnken designing (Table 2). Regression and variance analysis was carried out to determine the coefficient of determination, lack of fit and the significance of the linear, interaction effects and quadratic of the independent variables on the response (Table 3).

F-test and p-value were used to determine the significance of each coefficient (Table 3). The p-value represents the significance of the corresponding coefficients in terms of alcohol content, with a smaller p -value indicating more significant impact of the corresponding coefficient. The results of regression coefficient analysis showed that the variable with the largest effect was the quadratic term of fermentation time $\left(\mathrm{X}_{3}{ }^{2}\right)$, followed by liner term of fermentation time $\left(\mathrm{X}_{3}\right)$, which were extremely significant ($\mathrm{p}<0.01$). Also, the quadratic term of fermentation time $\left(\mathrm{X}_{2}{ }^{2}\right)$ and the interaction effects of yeast strains and fermentation temperature $\left(\mathrm{X}_{1} \mathrm{X}_{2}\right)$ were significant $(\mathrm{p}<0.05)$. However, the interaction effects of yeast strains and fermentation time $\left(\mathrm{X}_{1} \mathrm{X}_{3}\right)$, fermentation temperature and time $\left(\mathrm{X}_{2} \mathrm{X}_{3}\right)$, the quadratic term of fermentation temperature $\left(\mathrm{X}_{1}{ }^{2}\right)$, liner term of yeast strains $\left(\mathrm{X}_{1}\right)$ were not significant ($\mathrm{p}>0.05$).

Design Expert was applied to make regression fitting analysis, the quadratic model was obtained as follows:

$$
\begin{aligned}
& Y=33.835-2.4575 X 1+0.67875 \mathrm{X} 2- \\
& 0.41188 X 3+0.2 X 1 X 2-0.065625 \mathrm{X} 1 \mathrm{X} 3-4.68750 \\
& \mathrm{E}-003 \mathrm{X} 2 \mathrm{X} 3-0.42 \mathrm{X} 1 \wedge 2- \\
& 0.022778 \times 2 \wedge 2+0.024297 \mathrm{X}^{\wedge} 2
\end{aligned}
$$

where, Y is the predicted response (alcohol content of jujube brandy) and $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ are coded values of yeast strains, fermentation temperature and fermentation time, respectively.

From F-test, the low value of CV (1.96) indicates that the experiments are precise and reliable (Prakash Maran et al., 2013). The determination coefficient (R^{2})
implies that the sample variation of 90.03% for the alcohol content of jujube brandy is attributed to the independent variables. Meanwhile, the high R^{2} (0.9003), adj- $\mathrm{R}^{2}(0.7720)$ and $\operatorname{preR}^{2}(0.7143)$ clearly demonstrated that the experiment and the theoretical values predicted by polynomial model had a very close agreement. From the analysis, the F-value of 7.02 and p -value <0.01 indicates the response surface quadratic model was significant. Furthermore, results of the ANOVA indicated that the lack of fit of 0.9359 was insignificant.

Analysis of response surface:
Perturbationplot: Perturbation plot could be used to find the most effective factors by the steep slope or

Fig. 4: Perturbation plot showing the effect of process variables

Table 3: Analysis of Variance (ANOVA) for response surface quadratic model for flavor content of jujube brandy and independent variables $\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)$

Factor	Coefficient estimate	Sum of squares	df	Standard error	F-value	p -value
Model		31.27	9	3.47	7.020	0.0088
A-Yeast	-0.39	1.20	1	0.25	1.200	2.430
B-Temperature	-0.54	2.31	1	0.25	2.310	4.670
C-Time	0.98	7.61	1	0.25	7.610	15.37
AB	1.20	5.76	1	0.35	5.760	11.64
AC	-0.52	1.10	1	0.35	1.100	2.230
BC	-0.22	0.20	1	0.35	0.200	0.410
$\mathrm{A}^{\wedge} 2$	-0.42	0.74	1	0.34	0.740	1.500
$\mathrm{B}^{\wedge} 2$	-0.82	2.83	1	0.34	2.830	5.720
$\mathrm{C}^{\wedge} 2$	1.55	10.18	1	0.34	10.18	20.57
Residual		3.46	7	0.49		
Lack of fit		0.31	3	0.10	0.130	0.9359
Pure error		3.15	4	0.79		
Cor total		34.74	16			
SD		0.70		R^{2}	0.9003	
Mean		35.89		$\mathrm{R}^{\text {Adj2 }}$	0.7720	
C.V. \%		1.96		Pred R-Squared	0.7143	
PRESS		9.93		Adeq Precision	10.402	

(a)

Fig. 5: Surface plots for flavor content of jujube brandy; (a): figure plot to show yeast strains and temperature; (b): figure plot to show yeast strains and time; (c): figure plot to show temperature and time
curvature. Arelatively flat line means in sensitive to change in that particular factor. The response (Y) was plotted against the deviation from the reference point by changing only one factor over its entire range while holding all other factors constant (Actual Factors: Ayeast $=2.02703$, B-temperature $=24$, C-time $=16$, Fig. 4). The relationship between the responses and the experimental variables can be clarified graphically by
plotting three-dimensional response surface plots (Fig. 5 a to 5 c). Fermentation temperature and time have great influence on the alcohol content compared with yeast strains (Gupta and Ako, 2005).

Validation of the model: The aim of optimization was to find out the conditions which give the maximum alcohol content of jujube brandy. The optimum brewing

Fig. 6: Total ion chromatogram of volatile components in jujube brandy; (a): normal brewing method; (b): optimized brewing method
conditions and the maximum alcohol content were obtained desirability function approach was singleyeast GH , fermentation temperature of $18^{\circ} \mathrm{C}$, fermentation time of 24 d and the maximum alcohol content of jujube brandy was $39.905 \% \mathrm{vol}$ with a desirability value of 0.399 . Triplicate duplicate tests were performed under the optimized conditions with the mean values of $38.70 \pm 0.02 \% \mathrm{vol}$, which was consistent with the expected value of 39.905% vol, demonstrating that the optimized conditions agree well with the real experiments.

Quality of jujube brandy: Under the optimum fermentation conditions, the concentration of alcohol, total acid and esters in the final product were 38.7% vol,
$0.55 \mathrm{~g} / \mathrm{L}$ (calculated by the content of acetic acid) and $2.35 \mathrm{~g} / \mathrm{L}$, respectively. The product had a typical characteristic of brandy. Harmful by-products of methanol were $0.034 \mathrm{~g} / 100 \mathrm{~mL}$.

Flavor compounds of jujube brandy: Flavor compound of jujube brandy with optimized and normal brewing method have been compared (Fig. 6). The GCMS results demonstrated that there is a large difference between optimized and normal brewing method (Table 4). It determined that amount and content of flavor compounds in jujube brandy brewed by optimized process were higher than that of normal process, especially the esters. Such results indicated that the optimized process improved the mellow flavor of jujube brandy.

Table 4: Flavor compound of jujube brandy with optimized and normal brewing method

Time/min	Flavor compounds	Mol.wt.	Optimized	Normol
Esters				
8.75	Butanoic acid, ethyl ester	116.084	2.857	-
9.03	Butanoic acid, 2-methyl-, ethyl ester	130.099	3.545	0.4230
9.31	Butanoic acid, 3-methyl-, ethyl ester	130.099	1.716	0.2350
10.31	1-Butanol, 3-methyl-, acetate	130.099	3.185	-
10.54	Pentanoic acid, ethyl ester	130.099	2.918	0.6190
12.47	Hexanoic acid, ethyl ester	144.115	64.235	12.905
13.28	3-Hydroxymandelic acid, ethyl ester, di-TMS	340.153	-	0.3230
14.31	Heptanoic acid, ethyl ester	158.131	26.597	2.9030
14.58	Phthalic acid, ethyl tetradecyl ester	390.277	-	0.1940
14.60	Ethyl 2-hexenoate	142.099	2.393	0.3390
15.33	Octanoic acid, methyl ester	158.131	1.038	6.2660
15.37	3-Heptenoic acid, ethyl ester, (E)-	156.115	0.633	-
16.13	Octanoic acid, ethyl ester	172.146	158.427	-
16.51	Isopentylhexanoate	186.162	13.931	-
16.97	7-Octenoic acid, ethyl ester	170.131	11.764	0.7250
17.07	3-Octenoic acid, ethyl ester	170.131	6.014	0.2940
17.28	Pentanoic acid, 4-methyl-, methyl ester	130.099	-	0.2350
17.80	Nonanoic acid, ethyl ester	186.162	70.447	1.5910
18.68	3-Nonenoic acid, ethyl ester	184.146	1.293	-
18.73	Decanoic acid, ethyl ester	200.178	2.457	-
18.86	Decanoic acid, methyl ester	186.162	2.576	-
18.87	10-Undecenoic acid, ethyl ester	4574612	0.261877	-
18.90	Decanoic acid, methyl ester	186.162	4.045	0.2880
19.93	Decanoic acid, ethyl ester	200.178	903.618	26.004
20.20	Octanoic acid, 3-methylbutyl ester	214.193	12.457	-
20.36	Ethyl trans-4-decenoate	198.162	15.349	0.4390
20.53	Butanedioic acid, diethyl ester	174.089	6.63	-
20.73	Benzoic acid, ethyl ester	150.068	88.742	8.1310
20.86	Ethyl 9-decenoate	198.162	22.222	0.7600
21.57	Decanoic acid, propyl ester	214.193	1.93	-
22.03	Undecanoic acid, ethyl ester	214.193	52.626	0.4750
22.38	n -Capric acid isobutyl ester	228.209	4.244	-
22.66	Ethyl trans-2-decenoate	198.162	2.028	-
23.60	Benzeneacetic acid, ethyl ester	164.084	13.69	-
24.55	Acetic acid, 2-phenylethyl ester	164.084	0.93	-
24.66	Benzoic acid, 2-hydroxy-, ethyl ester	166.063	4.07	-
25.31	Dodecanoic acid, ethyl ester	228.209	926.025	18.382
25.61	Pentadecanoic acid, 3-methylbutyl ester	242.225	16.9	-
26.46	Benzenepropanoic acid, ethyl ester	178.099	145.549	2.2840
27.14	1-Butanol, 3-methyl-, benzoate	192.115	2.973	-
27.52	Ethyl tridecanoate	242.225	7.009	-
28.51	Ethyl 9-hexadecenoate	282.256	3.257	-
28.85	Methyl tetradecanoate	242.225	0.849	-
28.91	Benzenepropanoic acid, 2-methylpropyl ester	206.131	0.904	-
29.62	Tetradecanoic acid, ethyl ester	256.24	55.654	1.6200
29.92	Isoamyllaurate	270.256	5.08	-
30.57	(E)-9-Octadecenoic acid ethyl ester	310.287	0.988	2.5400
30.94	3-Phenylpropionic acid, 3-methylbutyl ester	220.146	2.389	-
31.22	2-Propenoic acid, 3-phenyl-, ethyl ester, (E)-	176.084	1.292	-
31.32	Pentadecanoic acid, ethyl ester	270.256	0.954	-
33.03	Hexadecanoic acid, ethyl ester	284.272	11.083	0.326
33.50	Ethyl 9-hexadecenoate	282.256	17.363	0.883
Alcohols 28.256				
9.87	1-Propanol, 2-methyl-	74.073	2.491	-
10.50	1-Hexanol	102.104	-	0.782
12.08	1 -Octen-3-ol	128.12	-	0.813
12.03	1-Butanol, 3-methyl-	88.089	83.681	
12.17	Heptanol	116.12	-	0.266
13.77	1-Octanol	130.136	-	0.188
13.96	Fluoren-9-ol, 3,6-dimethoxy-9-(2-phenylethynyl)-	342.126	-	0.421
15.28	3-Octanol	130.136	4.08	4.080
20.05	1-Nonanol	144.151	3.692	-
21.29	2-Tridecanol	200.214	0.855	-
27.00	Phenylethyl Alcohol	122.073	6.717	-
28.86	1,2,3,4-Butanetetrol, [S-($\left.\mathrm{R}^{*}, \mathrm{R}^{*}\right)$]-	122.058	-	0.565
Acids				
12.38	Acetic acid	60.021	-	0.469
15.63	Hexanoic acid, 2-methyl-	130.099	-	0.577
18.16	Hexanoic acid	116.084	-	3.449
$\underline{20.21}$	Heptanoic acid	130.099	-	1.428

Table 4: Continue

23.09	Octanoic Acid	144.115	-	2.189
26.15	Nonanoic acid	158.131	-	0.494
26.55	2-Octenoic acid, (E)-	142.099	-	0.250
28.12	n-Decanoic acid	172.146	-	12.018
29.59	Undecanoic acid	186.162	-	0.345
30.29	Benzenecarboxylic acid	122.037	-	1.089
30.83	Dodecanoic acid	200.178	-	8.232
34.09	Z-11-Tetradecenoic acid	226.193	-	0.303
Aldehydes and ketones				
5.59	3,6-Bis-dimethylaminomethyl-2,7-dihydroxy-fluoren-9-one	326.163	-	0.222
6.74	Butanal, 3-methyl-	86.073	11.148	-
8.61	3-Heptanone, 5-methyl-	128.12	-	0.148
8.96	2-Butenal	70.042	1.854	-
9.64	Hexanal	100.089	1.075	0.563
11.00	2-Nonanone	142.136	-	0.298
13.61	Octanal	128.12	2.776	-
14.19	Benz[e]azulene-3,8-dione, 5-[(acetyloxy)methyl] 3a,4,6a,7,9,10,10a,10b-octahydro-3a,10a-dihydroxy-2,10-dimethyl-, (3a.alpha.,6a.alpha.,10.beta.,10a.beta.,10b.beta.)-(+)-	348.157	-	0.295
14.50	5-Hepten-2-one, 6-methyl-	126.104	0.464	0.353
15.49	Nonanal	142.136	3.604	-
16.23	2-Tridecenal, (E)-	196.183	4.29	-
16.84	Furfural	96.021	3.794	-
17.27	Decanal	156.151	2.175	-
18.01	Benzaldehyde	106.042	58.846	0.190
19.01	2-Undecanone	170.167	0.88	-
19.04	2-Undecanone	170.167	0.825	-
20.27	Benzeneacetaldehyde	120.058	23.358	-
23.21	2H-1-Benzopyran-2-one, 3,4-dihydro-	148.052	13.651	-
23.70	$2(3 \mathrm{H})$-Benzofuranone, 3-methyl-	148.052	19.222	-
24.78	2-Buten-1-one, 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-,(E)-	190.136	1.437	-
25.51	5,9-Undecadien-2-one, 6,10-dimethyl-, (E)-	194.167	4.953	-
27.99	1-Hexanone, 1-phenyl-	176.12	0.748	-
28.28	2(1H)-Naphthalenone, octahydro-4a,7,7-trimethyl-, cis-	194.167	0.687	-
Hydrocarbons				
9.40	Butane, 1,1-diethoxy-3-methyl-	160.146	2.631	37.629
9.47	3,5-Diisopropoxy-1,1,1,7,7,7-hexamethyl-3,5-bis (trimethylsiloxy) tetrasiloxane	546.217	-	0.253
12.72	3-Isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5 tris (trimethylsiloxy) tetrasiloxane	576.21	-	0.441
13.10	Styrene	104.063	5.464	-
13.18	1H-Trindene, 2,3,4,5,6,7,8,9-octahydro-1,1,4,4,9,9-hexamethyl-	282.235	-	2.343
13.44	Decane, 3,7-dimethyl-	170.203	1.239	-
13.49	Dodecane, 2,6,11-trimethyl-	212.25	1.326	-
14.36	Cyclopentane, 1-ethyl-2-methyl-, cis-	112.125	0.561	-
15.24	Silane, [[4-[1,2-bis[(trimethylsilyl)oxy]ethyl]-1,2-phenylene]bis(oxy)]bis[trimethyl-	458.216	-	0.673
15.89	Bicyclo[4.2.0]octa-1,3,5-triene, 7-(2-propenyl)-	144.094	-	0.929
16.38	Benzene, 1,2,4,5-tetramethyl-	134.11	1.181	-
17.32	Benzene, 1-ethyl-2,3-dimethyl-	134.11	0.785	-
21.64	Benzene, (2,2-diethoxyethyl)-	194.131	3.671	-
22.85	Naphthalene	128.063	4.465	-
26.00	Naphthalene, 2-methyl-	142.078	4.779	-
26.86	Naphthalene, 1-methyl-	142.078	1.41	-
27.61	Benzeneacetaldehyde, .alpha.-ethylidene-	146.073	13.618	-
29.17	Naphthalene, 2,6-dimethyl-	156.094	0.924	-
30.46	Benzene, 1-isocyano-2-methyl-	117.058	-	0.135
32.75	Naphthalene, 1,6-dimethyl-4-(1-methylethyl)-	198.141	0.627	-
Others				
7.32	Pyrrolidine	71.073	-	0.473
7.44	2-Chloro-4-(4-methoxyphenyl)-6-(4-nitrophenyl)pyrimidine	341.057	-	0.321
9.28	1,2,4-(4H)-Triazole, 3-(1-benzoylamino)ethyl-4-propyl-	258.148	-	0.476
12.97	N -[4-Methoxy-3-methoxycarbonyl)benzoyloxy]succininide	307.069	-	1.169
13.84	1,2-Epoxy-3,4-dihydroxycyclohexano[a]pyrene,	530.267	-	0.407
16.50	trans-4-(2-(5-Nitro-2-furyl)vinyl)-2-quinolinamine	281.08	-	0.165
16.61	Naphthalene	128.063	-	0.286
16.75	Oxime-,methoxy-phenyl-_	151.063	6.244	0.453
16.88	Acetamide	59.037	-	0.079
21.08	Levoglucosenone	126.032	-	0.342
22.15	Benzenepropanenitrile, .beta.-oxo-	145.053	1.264	0.185
27.30	.alpha.-Calacorene	200.157	1.714	
29.90	1,4:3,6-Dianhydro-.alpha.-d-glucopyranose	144.042	-	0.363
32.96	2-Furaldehyde dimethyl hydrazone	138.079	-	0.321
33.75	1,4-Benzenediol, 2,3,5-trimethyl-	152.084	-	0.314
34.46	Ferrocene	186.013	-	0.423

CONCLUSION

In this present study, the brewing conditions of jujube brandy were optimized with a three factor three level Box-Behnken response surface design coupled with desirability function methodology. The results showed that, fermentation temperature and time had significant effect on the alcohol content of jujube brandy and a high correlated quadratic polynomial mathematical model was developed. The optimal conditions were determined to be: single-yeast GH, fermentation temperature of $18{ }^{\circ} \mathrm{C}$, fermentation time of 24 d . Under the optimal conditions, the experimental values $(38.70 \pm 0.02 \% \mathrm{vol})$ agreed with the predicted values (39.905% vol). The optimized process improved the mellow flavor of jujube brandy, which has great practical values.

ACKNOWLEDGMENT

This research was supported by the National Natural Science Foundation of China:

- The Research of Methanol and Fuel Oil Formation Mechanism and Control Measures in Traditional Chinese Jujube Brandy (Founding No. 31171725).
- Study on the flavor character and its formation mechanism of Chinese date brandy (Founding No. 31371815).
- China Scholarship Council (201508130082).

REFERENCES

Berradre, M., M. Mejias, J. Ferrer, C. Chandler, G. Paez, Z. Marmol, E. Ramones and V. Fernandez, 2009. Solid state fermentation of the wastes generated in the wine-making industry. Rev. Fac. Agron., 26(3): 398-422.
Chang, M., J. Lian, R. Liu, Q. Jin and X. Wang, 2014. Production of yellow wine from Camellia oleifera meal pretreated by mixed cultured solid-state fermentation. Int. J. Food Sci. Tech., 49(7): 17151721.

Claus, M.J. and K.A. Berglund, 2005. Fruit brandy production by batch column distillation with reflux. J. Food Process Eng., 28(1): 53-67.

Fan, W. and M.C. Qian, 2005. Headspace solid phase microextraction and gas chromatographyolfactometry dilution analysis of young and aged Chinese "Yanghe Daqu" liquors. J. Agr. Food Chem., 53(20): 7931-7938.
Fan, W. and M.C. Qian, 2006. Characterization of aroma compounds of Chinese 'Wuliangye' and 'Jiannanchun' liquors by aroma extraction dilution analysis. J. Agr. Food Chem., 54(7): 2695-2704.

Fan, W., H. Shen and Y. Xu, 2011. Quantification of volatile compounds in Chinese soy sauce aroma type liquor by stir bar sorptive extraction and gas chromatography-mass spectrometry. J. Sci. Food Agr., 97(1): 1187-1198.
Gupta, B.S. and J.E. Ako, 2005. Application of guar gum as a flocculant aid in food processing and potable water treatment. Eur. Food Res. Technol., 221(6): 746-751.
Huafeng, Y., Z. Xinan and C. Yong, 2003. Research on artificial aging of fresh wine with high strength electromagnetic field. Liquor Making, 3: 40-42.
Jackson, R.S., 2002. Wine Tasting: A Professional Handbook. Elsevier Academic Press, California.
Jijun, W., X. Gengsheng and L. Xueming, 2005. Research on new technology of fruit wine. Liquor Making, 32(2): 76.
Jiming, L. and H. Puchao, 2004. Analysis on flavor components ofwild wine. J. Fruit Sci., 21(1): 1116.

Li, J.W., L.P. Fan, S.D. Ding and X.L. Ding, 2007. Nutritional composition of five cultivars of Chinese jujube. Food Chem., 103(2): 454-460.
Luo, T., W. Fan and Y. Xu, 2008. Characterization of volatile and semi-volatile compounds in Chinese rice wines by headspace solid phase microextraction followed by gas chromatographymass spectrometry. J. I. Brewing, 114(2): 172-179.
Ni, M.L. and Q.X. Zeng, 2010. Study on the extraction technology of oat polyphenol by response surface methodology [J]. Sci. Technol. Food Ind., 4: 77.
Prakash Maran, J., V. Mekala and S. Manikandan, 2013. Modeling and optimization of ultrasoundassisted extraction of polysaccharide from Cucurbita moschata. Carbohyd. Polym., 92(2): 2018-2026.
Qianwen, L. and H. Zhengjun, 2000. Infrared artificial aging of Xueshanrhodiola wine. Liquor Making, 1: 88-89.
Rapp, A., 1998. Volatile flavour of wine: Correlation between instrumental analysis and sensory perception. Nahrung, 42(6): 351-363.
Zhang, R., Q. Wu and Y. Xu, 2013. Aroma characteristics of Moutai-flavour liquor produced with Bacillus licheniformis by solid-state fermentation. Lett. Appl. Microbiol., 57(1): 11-18.
Zheng, X.W., M.R. Tabrizi, M.J.R. Nout and B.Z. Han, 2011. Daqu- A traditional Chinese liquor fermentation starter. J. I. Brewing, 117(1): 82-90.
Zhu, S., X. Lu, K. Ji, K. Guo, Y. Li, C. Wu and G. Xu, 2007. Characterization of flavor compounds in Chinese liquor Moutai by comprehensive twodimensional gas chromatography/time-of-flight mass spectrometry. Anal. Chim. Acta, 597(2): 340348.

[^0]: Corresponding Author: Jie Wang, College of Food Science and Technology, Agricultural University of Hebei, Baoding 071000, China, Tel.: +86-13131262819
 This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

