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Shuhan Wang, Xiaoli Zhang, Ming Yang, Hongzhi Li and ZhangYing 
Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 
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Abstract: Remote sensing data with high spatial resolution can potentially be used to estimate the biomass of 
individual tree crowns. As a first step, the location of each tree must be identified; this step is particularly important 
in dense forests. Total station (Pentax R-400) and a handheld differential Global Positioning System (GPS) were 
used in tandem to determine accurate locations of single trees. The locations were then combined with high spatial 
resolution remote sensing data to extract additional forest vegetation information. Tree location data were 
interpreted visually and were also the inputs for a ray-based automated method of crown delineation. Compared to 
field-collected crown data, the mean accuracy of the visually interpreted data was 65% in plot B3 (RMSE = 0.60) 
and 79% in plot B15; plot B15 did not have a dense canopy and had a Smaller Error Statistic (RMSE = 0.32). The 
ray model was less accurate. Crown size estimated from both the visually interpreted data and the ray-based model 
was usually smaller than that estimated from field data. One conclusion of this study is that crowns with a narrower 
density distribution are correlated with a higher error rate. The crown delineation method proposed in this study was 
shown to be feasible. 
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INTRODUCTION 

 
The present study was conducted in Jiufeng 

National Forest Park (39°54′N, 116°28′E), Haidian 
District, Beijing (Fig. 1). The park covers 811.173 hm

2
 

and is topographically varied, with a maximum 
elevation of 1153 m and a minimum elevation of 60 m. 
Naturally regenerated trees are rare in this forest. Most 
species, including Pinus tabulaeformis Carr, 
Platycladus orientalis, Robinia pseudoacacia, Quercus 
variabilis and Quercus aliena, were planted in the 
1950s and 1960s. The study area has a sub-humid 
continental climate with cold dry winters and hot rainy 
summers. Upland forest stands are fragmented, sharing 
the area with patches of dense shrub. The lowland 
forests are more uniform and continuous. The relatively 
moderate slopes of the lowland forests were therefore 
selected as the site of the study plots. 

Forests play an important role in maintaining 
ecosystem balance and supporting environmental, 
social and economic development. Forests not only 
provide renewable resources for human activities such 
as economic development and entertainment but also 
protect ecosystems by preserving biodiversity and 
preventing soil erosion and runoff. Forest managers 
need detailed inventory data to support decision 
making. Data collection needs include frequent 
estimation of average basal area, height, age and 
canopy density at the compartment level and the 

location, species and canopy size of individual trees 
(Ke and Quackenbush, 2011). It is theoretically feasible 
to estimate forest attributes from high resolution remote 
sensing data. High resolution panchromatic images can 
achieve sub-meter resolution and individual tree crowns 
are commonly more than 1 m and sometimes exceeding 
8 m. Computer models are increasingly used to 
automate the process of extracting forest data from 
remotely sensed imagery (Leckie et al., 2003; Mallinis 
et al., 2008; Song et al., 2010; Wang et al., 2004). 
Visual interpretation and automated computer-based 
methods are two main approaches used to gather data 
on tree crowns. Computer-based methods of assessing 
forest characteristics are more efficient and have been 
the focus of remote sensing applications in forestry in 
recent years (Liu et al., 2010). 

Forest inventory has traditionally involved periodic 
resurveys of trees in sample plots. Visual interpretation 
of aerial photographs became common during the 
1960s, but labor and equipment costs were high for 
both the field and the office components. Currently, 
field survey techniques are resource and labor intensive. 
If we can extract characteristics such as crown diameter 
of the tree from remotely sensed images, we can then 
use these data to model attributes such as trunk 
diameter, height and biomass. These attributes are 
useful for forest resource inventory and growth 
assessments (Pouliot et al., 2002). Forestry analyses 
such as those needed for monitoring urban trees or for
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Fig. 1: Study area of Jiufeng National Forestry Park 

 
timber harvest can benefit from identification of the 
spatial coordinates of single trees and forests. Spatial 
data can also be used for assessment of the single tree 
competition index, estimation of forest biomass 
(Santoso et al., 2011) and forest pest management 
(Zhang et al., 2011). High-resolution remote sensing is 
a promising method for reducing the uncertainty 
associated with estimates of carbon held in forest 
biomass. The uncertainty in canopy area estimates 
derived from high resolution images can be decreased 
by applying Monte Carlo methods to large samples. 
The use of Light Detection and Ranging (LIDAR) data 
to estimate parameters needed for biomass or carbon 
density calculations has become increasingly popular 
(Fransson et al., 2000). Tree heights can be accurately 
estimated from LIDAR data and biomass is highly 
correlated with tree height. Combined with field 
measurements and canopy information extracted from 
high resolution images, LIDAR data are therefore more 
effective than QuickBird data for estimating forest 
characteristics (Gonzalez et al., 2010; Holmgren and 
Persson, 2004). Additionally, crown detection 

algorithms based on high resolution remote sensing 
images underestimate the number of trees, whereas 
LIDAR has lower uncertainty and higher precision. The 
algorithm used to analyze high resolution remote 
sensing images can also be used to extract information 
about individual trees from LIDAR data (Chen et al., 
2006). LIDAR data provide detailed information about 
forest vertical structure and canopy. We can therefore 
use LIDAR data to estimate tree height, trunk volume 
and stand biomass at the stand level (Gobakken and 
Naesset, 2005; Maltamo et al., 2006; Næsset, 2002) or 
crown diameter and tree height at the individual tree 
level (Brandtberg et al., 2003). Acquiring LIDAR data, 
however, is difficult and expensive. Therefore, tree 
crown data are still most commonly extracted from 
optical high resolution remote sensing images (Ke and 
Quackenbush, 2011). 

The three main methods of using high resolution 
remote sensing imagery to delineate tree crowns are 
distinguished by the type of information derived from 
the image: tree location; tree location and crown 
dimensions;  or  full  crown  delineation  (Gougeon  and 
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Leckie, 2006). Crown detection is an important early 
step because it directly affects the accuracy of crown 
delineation. Identifying the position of individual trees 
in remotely sensed images typically involves an initial 
smoothing of the image followed by a local maximum 
detection method that identifies the canopy on the 
smoothed image (Dralle and Rudemo, 1996, 1997). The 
size of the detection filter convolution kernels should be 
appropriate for the tree size and image resolution. This 
technique produces good results in medium- to high-
density coniferous stands; the point of the local 
maximum usually coincides with the tree top. Locally 
adaptive variations of the process that adjust the 
window size to fit the tree size have been developed 
and are being applied in other disciplines (Gougeon and 
Leckie, 1999; Wulder et al., 2000). This technique can 
be used to extract the number of tree trunks from the 
image, enabling the efficient estimation of stand 
density. The stand composition of the canopy can be 
determined by combining the above method with data 
obtained by applying traditional per-pixel classification 
methods to multispectral images (Leckie et al., 1992). 
The number of broad-leaved trees, however, cannot be 
precisely detected because there is more than one 
maximum brightness point. Detection of the local 
maximum and the edge of canopy is often used to 
determine crown position and crown dimensions such 
as diameter (Pouliot et al., 2002; Uuttera et al., 1998). 
The canopy edge detection method detects sudden 
changes, i.e., high gradients, in the transect running in 
each cardinal direction from the local maximum value. 
Canopy edge detection is typically more successful on 
the sunny side of the canopy because there are fewer 
shadows. The length of the transect represents the 
crown radius. Matching image features to two-
dimensional projections of tree crown models is an 
more effective method to identify tree locations and 
crown dimensions (Larsen and Rudemo, 1998). The 
image must be analyzed multiple times and a 
sophisticated decision system also need to resolve 
conflicting evidence, once for each specific crown type 
and diameter and Currently, image segmentation is 
incorporated into tree crown delineation methods; this 
approach segments the crown to delineate the crown 
contours. An improved segmentation algorithm was 
used to extract crown information from abandoned 
farmland and achieved an overall accuracy of 84.67% 
by selecting features such as spectral signature, shape 
and texture (Wu and Peng, 2010). Most algorithms, 
however, can be applied only to specific stand types. 
Additional research needs to be conducted on stands 
with many overlapping crowns. An algorithm that 
analyzed canopy characteristics in panchromatic 
imagery has been used to extract forest parameters such 
as stand density, canopy coverage and tree height 
(Chopping, 2011). Valley-following algorithms and 
directional changes in image texture can also be used to 
derive individual tree parameters (Culvenor, 2003). 

Individual tree crowns can be identified with a fuzzy 
method that has been applied to two different high 
resolution remote sensing data sets (Ardila et al., 
2012b). Changes in an urban forest were analyzed and 
an image analysis method based on geographic objects 
was used to locate and describe individual tree crowns; 
recognition accuracies reached 70 and 82%, 
respectively in two different places in Netherlands 
(Ardila et al., 2012a). A model of canopy structure and 
health has been developed from pixel decomposition 
and spatial analysis of QuickBird multispectral images 
(Levesque and King, 2003).  

Accuracy assessments of methods for detecting 
individual tree crowns typically compare the results for 
visual extraction of individual trees to individual tree 
data from reference plots (Brandtberg and Walter, 
1998; Gougeon, 1995). These methods have been tested 
in natural and planted forests (Wulder et al., 2000). The 
best correct recognition rate is 62%, with an 11% 
commission error. Validation of automated extraction 
methods aggregated at the stand level generally yields 
better error statistics than when data are evaluated at the 
individual tree level. When results are aggregated at the 
stand level, only the number of trees is required, not 
their exact location; the inability to identify incorrectly 
delineated trees prevents improvement of the 
algorithms. The precision of valley-following 
algorithms for detecting different age classes during 
forest regeneration can be evaluated by validation 
method aggregated at the stand level. The results 
showed that the average error ranged from 43 to 11% in 
jack pine stands of different ages (Gougeon and Leckie, 
1998).  

Many studies that identify individual tree locations 
apply local maximum extraction algorithms to remote 
sensing images to identify the center of each tree 
crown. In this study, however, a novel tree crown 
delineation method was developed by combining 
ground measurements and high resolution remotely 
sensed imagery with precise preprocessing. We 
identified the precise position of each tree with the 
Total Station (Pentax R-400 Made in Japan) and 
handheld Global Positioning System (GPS) and 
identified overlapping tree crowns using visual 
interpretation and a ray-based model. The accuracy of 
the two methods of identifying the tree crowns was 
assessed against the measured plot data. The points 
identified by the proposed method can be entered into a 
Geographic Information System (GIS) for further 
analysis. 
 

METHODOLOGY 

 
Acquisition of individual tree coordinates: The field 
work was carried out in August 2009. Two plots 
(20×20 m) were studied, B3 (Platycladus orientalis) 
and B15 (Pinus tabulaeformis, Platycladus orientalis). 
Both plots contain coniferous stands on minimal slope.
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Fig. 2: Steps in determining the total station coordinates 

 
The canopy density in B3, a half-mature forest with 
smaller crowns, reached 70%, with shrub coverage of 
10% and grass coverage of 20%. The values are 40, 60 
and 90%, respectively in B15, with larger crown areas 
in the overmature forest. 

Many studies have addressed the problem of 
specifying the location of single trees. Feng et al. 
(2003) proposed measuring tree height with the total 
station. The same authors developed and patented 
mountain crown positioning technology (Feng et al. 
2008). Precision forestry was furthered with the 
invention of advanced instruments such as the tree 
measuring gun (Xu et al., 2013) and smart station (Feng 
and Wang, 2012). Tree characteristics such as height, 
Diameter at Breast Height (DBH) and crown width can 
also be measured using the electronic total station (Feng 
and Yao, 2007; Yan et al., 2012). The total station can 
accurately determine the relative coordinates of objects 
and provide accurate relative positions of single stems. 
Problems occurred, however, when we tried to position 
the relative coordinates on a remote sensing image or to 
integrate them into a GIS environment. GPS, by 
contrast, can directly obtain an object’s geodetic 
coordinates with high accuracy, generally below 2 m 
and down to 1-5 mm after processing (Yu et al., 2004), 
but the differential accuracy is usually low in forests 
because the trees block the signal. This study presents a 
single tree crown information acquisition scheme that 
uses both total station and GPS data.  

Tree trunks were measured with a total station and 

designated as the center points of the tree crowns. A 

handheld differential GPS S740 (South Surveying and 

Mapping Instrument Corporation) was used to collect 

the reference points of the Total Station (Pentax R-

400). The procedures were as follows: 

 

• Base station coordinates were acquired at plot 

locations without tree cover to ensure precise GPS 

data.  

• The back sight point was confirmed by taking a 

point at a distance D away from the base point to 

the south or north; with a compass, the value D can 

be chosen as 5 or 10 m. The coordinate of the back 

sight point can be inferred because the geodetic 

coordinates of the base station are known. When 

using the same abscissa as the base station, the 

ordinate value should be plus D if the back sight 

point is to the north of the base station and minus D 

if it is to the south of the base station. 

• The back sight point was aimed.  

• To address transfinite errors, we returned to step 2 

if the error was greater than 0.01 m.  

• We started measuring when the total station 
coordinate system was established. The 
establishment of the measurement system is 
diagrammed in Fig. 2. 

Yes 

No 

Coordinate locating of base station point 

Confirmation of backsight point 

Aiming the backsight point 

If out of range 

Input to total station 

Beginning survey 

Establishment of the total station 

coordinate system 

Canopy coordinates acquisition 
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Fig. 3: Steps for extracting individual tree crowns visually and with field measurements 

 
Remote sensing image preprocessing: We used 16-bit 

standard Level 2 (LV2A) QuickBird imagery with 

coarse geometric rectification. The imagery was 

acquired on 28 October 2008. The sun-elevation angle 

was 37.3° and the azimuth angle was 166.6°.  

The QuickBird image has four multispectral bands 

with 2.4 m spatial resolution and one panchromatic 

band with 0.6 m spatial resolution. The wavelet 

merging technique is considered as one of the methods 

for preserving the multispectral features when 

improving spatial features (Li et al., 2002; Lu et al., 

2008; Lu et al., 2010; Ulfarsson et al., 2003). 

Therefore, it was used to merge the QuickBird 

multispectral bands and panchromatic band into a new 

multispectral image with 0.6 m spatial resolution. The 

new fused multispectral images were used for visual 

interpretation of the tree crowns. Road intersections, 

houses and other obvious features in the 1:10000 

topographic map were used as the control points. 

Geometric correction and orthorectification within an 

error of less than 5 pixels were performed by using a 

high accuracy Digital Elevation Model (DEM) 

extracted from the contour lines. We used a Transverse 

Mercator projection, Beijing 1954 ellipsoid, with a 

central longitude of 117° E and proportional factor of 1. 

 

Canopy delineation based on the ray model: The size 

of a tree crown can be calculated from the tree’s 

position. There are many methods for delineating tree 

crowns. We used a ray model combined with known 

individual tree locations. The first step of the ray model 

was to assign a specific number of rays of a given 

length to extend outward from the tree center point. The 

Digital Number (DN) of pixels in each ray was 

recorded and those values were fitted to a curve. The 

points at which the value of the second derivative of the 

curve approached zero were identified as the margin 

points of an individual tree (Pouliot et al., 2002). The 

ray model was implemented in the platform Visual 

Studio 2008 developed by Microsoft Corp (in 

Redmond, Washington, US) using the C#. NET 

language. The tree crown center points determined from 

field measurements were used for this semi-automatic 

delineation of individual trees. 

 

Evaluation of individual tree location results: The 

results of the automatic and manual crown delineation 

methods can be compared with the ground 

measurements. The visual extraction and manual 

delineation of tree crowns was based on trunk locations 

(Fig. 3). 

The feasibility of the method was validated using 

the following approach. After extracting the crown 

using the visual interpretation method and comparing 

the size of the manually drawn crown to ground-based 

crown measurements, we used the accuracy, E, to 

assess the difference between the two measurements. 

The Root Mean Square Error (RMSE) represents the 

overall deviation of the visual interpretation from the 

ground measurements. The accuracy, E, quantifies the

 
Plots Selection 

Comparison of Results 

High Resolution Remote Sensing image preprocessing 

Tree Crown Center Points Collection using Total Station 

Visual Interpretation Field Measurement 
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Fig. 4: Tree crown extraction using visual interpretation in plot B15 
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overall accuracy of crown extraction from the remote 

sensing image. The relative error is the difference 

between individual visual extraction and field 

measurement results. A positive relative error means 

the results of the visual interpretation are larger than 

those of the field measurements Eq. (3). The RMSE of 

the visually interpreted data was calculated as follows: 

 

( )

%100

2

×=
∑

−

B

n
RMSE

ii BA

              

 

(1) 

 

The formula for E is: 

 

%100/ ×= BAE                               (2) 
 

 

The formula for the relative error, Vi, is: 
 

i

ii
i

B

BA
V

−
=

                                            (3)

 

 

Ai is the crown area (m
2
) derived from either visual 

interpretation or automated delineation using the ray 

model and Bi is the crown area (m
2
) measured in the 

field. �� and ��  are plot-level mean crown area from the 

visually interpreted or ray model data and from the field 

measurements, respectively. The data from the visual 

interpretation method were analyzed with GIS software; 

the field measurement results were calculated using the 

field-measured average crown diameter, assuming the 

canopy to be a circle (Fig. 4 and 5). 

Table 1: Comparison of tree crown results from field measurement and visual interpretation 

Number Tree species DBH/ (cm) MVC/ (m) TCA/ (m2) VTA/ (m2) RTA (m2) 

B15-1  Styphnolobium japonicum 68.0 11.55 104.72 98.63 50.37 
B15-2 Platycladus orientalis 55.0 7.15 40.13 17.51 15.59 

… … … … … … ... 

B15-24 Platycladus orientalis 40.2 6.35 31.65 29.58 27.82 
B15-25 Platycladus orientalis 35.0 6.25 30.66 23.14 28.96 

B15-26 Pinus tabulaeformis Carr 58.2 11.75 108.38 99.79 37.38 

B15-27 Platycladus orientalis 18.8 4.70 17.34 10.71 20.95 
B3-2 Platycladus orientalis 17.5 2.50 4.90 2.910 3.810 

B3-3 Platycladus orientalis 16.3 4.65 16.97 9.610 10.84 

… … … … … … … 
B3-58 Platycladus orientalis 13.1 2.90 6.60 6.63 6.97 

B3-59 Platycladus orientalis 10.6 3.00 7.07 5.90 6.32 
B3-60 Platycladus orientalis 8.0 1.65 2.14 1.09 1.94 

B3-63 Platycladus orientalis 4.2 3.30 8.55 8.54 7.52 

DBH: Diameter at breast height; MVC: Mean value from east-west and north-south of one tree crown, (SN+WE) /2; TCA: Tree crown area from 

field measurement; VTA: Tree crown area from visual interpretation; RTA: Tree crown area from ray model 

 

 
 

Fig. 5: Continue 
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Fig. 5: Tree crown extraction using visual interpretation in plot B3 

 
Table 2: Accuracy analysis of visual interpretation 

Number MAVI/ (m2) MAFM/ (m2) RMSE/ (%) E/ (%) 

B15 29.02 36.80 32 79.0 
B3 5.22 8.00 60 65.3 

MAVI: Mean area of visual interpretation; MAFM: Mean area of field measurement; MAAE: Maximum of absolute error; MIAE: Minimum of 

absolute error; RMSE: Root mean square error; E: Precision 
 

Table 3: Accuracy analysis of automated delineation 

Number MARM/ (m2) MAFM/ (m2) RMSE/ (%) E/ (%) 

B15 23.020 36.80 60.7 62.6 
B3 4.607 8.00 66.7 57.6 

MARM: Mean area of ray model; MAFM: Mean area of field measurement; RMSE: Root mean square error; E: Precision 

 

RESULTS AND DISCUSSION 
 
Table 1 shows the crown areas derived from the 

visual extraction, automated delineation and field-based 
methods. 

Mean tree crown parameters were calculated for 
each plot for each of the three crown measurement 
methods (Table 1). The accuracy of visually interpreted 
and automatically delineated tree crowns is shown in 
Table 2 and 3, respectively and the relative error 
percentage is shown in Fig. 6.  

Figure 4 and 5 illustrate the visual extraction of 
tree crowns from trees with identified centers. Figure 7 
shows the results of extracting the crown of tree 26, 
plot B15, with the ray model. Figure 8 shows the 
correlation analysis of visual interpretation and 
automated extraction with ground crown measurements. 

Figure 6 shows the extraction accuracy for each 
individual tree, with the larger values on the histogram 
representing greater relative error. The accuracy of the 
visual interpretation of tree 26, plot B15, is relatively 
high (92.5%) because there are no overlapping tree 
crowns in the plot. Where crowns overlap, however, 
extraction accuracy varies greatly. 

The average accuracy of visually extracted tree 
crowns is higher in plot B15 (79%) than in plot B3 
(65.3%) and the RMSE in plot B15 (0.32) is smaller 
than that of plot B3 (0.60; Table 2). The methods of 
ray-based automated delineation and visual 
interpretation produce consistent results (Table 3). 
Whether using visual interpretation or ray-based 
methods, more accurate results are obtained when 
canopy density is lower, as in plot B15 and when 
individual tree crowns are larger, as is the case with
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Fig. 6: Relative error in tree crown size in plots B15 and B3 

 

 
 

Fig. 7: Extraction of the crown of tree 25, plot B15, using the 

ray method 

 

plot B15 (36.8 m
2
) compared to plot B3 (8.0 m

2
). 

Crown extraction by visual interpretation is more 

accurate than by the ray method in both plots. The 

RMSE suggests that the results of visual interpretation 

are generally more reliable than those of the ray-based 

method. Whether visual interpretation or automatic 

delineation is used, the RMSE of crown area from plot 

B3 is larger than that from plot B15; this result suggests 

that crowns with a narrower density distribution are 

correlated with a higher error rate. 

Figure 6 shows the degree to which crown size 

differs between the visually interpreted data and the 

ground survey. Trees 3, 4, 9, 11, 12, 20, 23 and 27, 

respectively in plot B15 have high relative errors; the 

error associated with Tree 11 is particularly high. This 

error occurred because crown overlap affected the 

accuracy of visual interpretation. More than 80% of the 

visually interpreted tree crown areas are smaller than 

the true value (Fig. 6), indicating that crown area is 

often underestimated when derived from visual 

interpretation of remote sensing images. The crown 

area of tree 26, plots B15, extracted by the ray-based 

model (37.38 m
2
), is much smaller than the area 

determined by ground measurement (108.38 m
2
). Using 

visual interpretation, however, the overall crown 

accuracy can reach 79% in the presence of overlapping 

crowns if precise locations have been determined. 

Finally, Fig. 8 shows the linear fit of the ray-based 

method and the visual extraction method to ground 

measurements of individual tree crowns. The results 

show that regressing the visual interpretation data on 

the ground measurements can yield an R
2
 of 0.8 or 

more in both plots. The fit of the ray-based method to 

the true values is relatively poor. The figure shows that 

the proposed crown extraction scheme in this study is 

feasible. 
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Fig. 8: The correlation analysis of tree crown extraction in 

plots B3 and B15 

 

The crown area calculated from the ground survey 

is not a true value, however, because we used the 

average diameter in two directions (east-west and 

north-south) to calculate the area and assumed the 

crown to be a circle. Additional studies should focus on 

how to measure individual tree crowns; some 

researchers have already proposed direct canopy 

measurements using the Total Station. In addition, a 3D 

terrestrial laser scanner would be advantageous because 

the measurement point cloud data can be used to more 

accurately estimate crown attributes such as area and 

volume. These more accurate data would improve our 

ability to verify results. Accurate data acquisition is a 

topic for future research. 

The accuracy of the tree locations measured in the 

field was relatively high (±1 m). In practice, however, 

most plots are in the forest interior where there are 

significant problems with blocked signals; this issue did 

not arise in plot B15, located on the forest edge. 

Although the relative position of the sample trees 

measured by Total Station is invariant, positioning 

precision can be very low because of the weak signal in 

forests. Therefore, assigning accurate locations to trees 

remains difficult when the canopy density is high or 

there are no obvious reference points in the surrounding 

area. Thus, the crown delineation method proposed in 

this study is not perfect and needs further improvement.  

CONCLUSION 

 

This study attempts to address the problem of 

accurately determining the spatial coordinates of single 

trees by using GPS in conjunction with Total Station. 

The conclusions are: 

 

• The proposed method integrated field survey, 

remote sensing and GIS techniques and could be 

used to obtain accurate locations of single trees. 

• Although the extraction methods performed poorly 

when tree crowns overlapped, the average accuracy 

of the visual interpretation method can be as high 

as 0.79 and the R
2
 can exceed 0.85.  

• The crown areas were usually underestimated and 

the extraction accuracy of the ray-based model was 

worse than that of visual interpretation.  

 

Future research should focus on finding a better 

algorithm for this method. The method we proposed for 

determining accurate locations can be a springboard for 

studying issues such as the uncertainty in estimates of 

remotely sensed forest vegetation parameters, including 

leaf area index, biomass and 3D green biomass. The 

method is significant for both forestry research and 

forest management. 
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