Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Influence of pH in Mechanical Properties of Conductive Polymers Synthesized from Cassava Starch

1Alvaro Arrieta, 2Rafael Tuiran and 3Miguel Montoya
1Department of Biology and Chemical, Universidad de Sucre, Cra. 28 No 5-267, Sincelejo 700008
2Department of Mechanical Engineering
3Research Group in Development and Application of New Materials, Universidad Pontificia Bolivariana, Cra. 6 No.97a- 99, Monter
Research Journal of Applied Sciences, Engineering and Technology  2017  4:155-160
http://dx.doi.org/10.19026/rjaset.14.4159  |  © The Author(s) 2017
Received: January 1, 2017  |  Accepted: March 19,2017  |  Published: April 15, 2017

Abstract

This study presents experimental investigation on synthesis of conducting polymer films made from cassava starch with the purpose of evaluating the influence of pH on some mechanical and physicochemical properties. Starch increases the mechanical integrity in biodegradable conductor polymers used like sensors, but there are some others potential factors influencing mechanical properties like plasticizers, additives and process conditions. No previous works report the quantitative effect of pH on mechanical properties of cassava starch’s film. Glycerol, glutaraldehyde and polyethylenglycol were used as plasticizers. To obtain acid and basic films, pH was modified by HCl and NaOH. Seven different pH levels were reached, in order to evaluate tensile strength, ductility and elastic module. Tensile tests were developed according to the ASTM D638 norm. Clear influence of pH in these mechanical properties was found; which is shown through a regression that relates ductility with a pH input. This research concludes that is possible to modify the mechanical strength or flexibility of the films by changing pH, which is in general terms a practical process. Acid films have a higher elastic module (50-70 MPa) than polymers with basic pH (15-25 MPa). Basic films’ deformation shows higher values than acid films; the first ones reach 0.95 mm/mm of deformation and the second ones have average values of 0.3 mm/mm.

Keywords:

Cassava starch, ductility, elastic module, pH, tensile strength,


References

  1. Arrieta, Á.A., M.L. Rodríguez-Méndez and J.A. De Saja, 2010. Aplicación de una lengua electrónica voltamétrica para la clasificación de vinos y estudio de correlación con la caracterización química y sensorial. Quim. Nova, 33(4): 787-793.
    CrossRef    
  2. Almario, Á.A., A.J. Mu-oz and M.P. Luna, 2015. Películas conductoras de almidón de yuca (cassava) como material para un acumulador electroquímico de carga (batería). Rev. Soc. Quím. Perú, 81(4): 328-338.
    Direct Link
  3. Arrieta, A. and A. Jaramillo, 2014. Bioplásticos eléctricamente conductores de almidón de yuca. Rev. Colomb. Mater., 5: 42-49.
    Direct Link
  4. Arrieta, A.A., P.F. Ga-an, S.E. Márquez and R. Zuluaga, 2011. Electrically conductive bioplastics from cassava starch. J. Braz. Chem. Soc., 22(6): 1170-1176.
    CrossRef    
  5. De Aquino, A.B., A.F. Blank and L.C.L.D.A. Santana, 2015. Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem., 171: 108-116.
    CrossRef    PMid:25308649    
  6. Deep, A., A.L. Sharma, P. Kumar and L.M. Bharadwaj, 2012. Nanostructured polyaniline-silicon substrate for protein biosensing. Sensor. Actuat. B-Chem., 171-172: 210-215.
    Direct Link
  7. Pircher, N., S. Veigel, N. Aigner, J.M. Nedelec, T. Rosenau and F. Liebner, 2014. Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohyd. Polym., 111: 505-513.
    CrossRef    PMid:25037381 PMCid:PMC4118683    
  8. Quiroga, R.M. and W.V. Díaz, 2011. Metodología para la caracterización termo-mecánica de películas plásticas biodegradables. Prospect, 9(1): 46-51.
    Direct Link
  9. Singh, J. and S. Gu, 2010. Commercialization potential of microalgae for biofuels production. Renew. Sust. Energ. Rev., 14(9): 2596-2610.
    CrossRef    
  10. Tsai, B.H., C.J. Chang and C.H. Chang, 2016. Elucidating the consumption and co2 emissions of fossil fuels and low-carbon energy in the united states using lotka–volterra models. Energy, 100: 416-424.
    CrossRef    
  11. Venugopal, V., H. Zhang, R. Northcutt and V.B. Sundaresan, 2014. A thermodynamic chemomechanical constitutive model for conducting polymers. Sensor. Actuat. B-Chem., 201: 293-299.
    Direct Link

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved