Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Optimization of the Production of a &beta-1, 4-endoglucanase from a Newly Isolated Bacillus sp.RL1 by Medium Optimization and Analysis Different Growth Parameters

1Rahman Laibi Chelab and 2Xingyong Yang
1Department of Biology, Education for Pure Sciences Faculty, Thi-Qar University, Iraq
2School of Life Sciences, Southwest University, Chongqing 400715, China
Research Journal of Applied Sciences, Engineering and Technology  2016  8:664-674
http://dx.doi.org/10.19026/rjaset.13.3052  |  © The Author(s) 2016
Received: May ‎17, ‎2016  |  Accepted: June ‎28, ‎2016  |  Published: October 15, 2016

Abstract

The aim of this study was for the production of extracellular endoglucanase by a novel new strain of Bacillus sp. RL1 isolated from soil was improved by medium optimization. A low cost source of &beta-1, 4-Endoglucanase (EG) with robust activity is of potential commercial value. Here, we identified a soil bacterial strain, Bacillus sp. RL1, as a potential source for EG with high temperature tolerance. The culture parameters, such as duration of incubation, incubation temperature, pH, carbon and nitrogen sources and agitation speed and additives, were optimized for enhancing EG yield. The optimal level of each parameter for maximum EG production by Bacillus sp. RL1 was determined. Results showed that the EG production was higher 4-folds with pineapple containing production medium, beef extract, shaking 200 rpm and CoCL2 and the incubation temperature, time course and pH were 35°C, 3rd day and 7.0 respectively, coparasion with basil medium (CMC). Thermal stability of EG was approximately 85.5% at 90°C for 30 min. The enzyme maintained stability over a wide range of pH from 4- 10. In addition optimized medium containing agricultural wastes pineapple combined with best two nitrogen sources (organic and inorganic nitrogen sources) showed significant activation on EG, FPase, glucosidase and xylanase were 18-folds, 6.5 –folds, 14- folds and 13- folds, respectively.

Keywords:

Bacillus sp. RL1, endoglucanase, new strain, optimization of enzyme production, pineapple,


References

  1. Aa, K., R. Flengsrud, V. Lindahl and A. Tronsmo, 1994. Characterization of production and enzyme properties of an endo-beta-1,4- glucanase from Bacillus subtilis CK-2 isolated from compost soil. Anton. Leeuw., 66(4): 319-326.
  2. Ariffin, H., N. Abdullah, M.S. Umi Kalsom,Y. Shirai and M.A. Hassan, 2006. Production and characterisation of cellulase by Bacillus pumilus EB3. Int. J. Eng. Technol., 3(1): 47-53.
  3. Ariffin, H., M.A. Hassan, U.K. Shah, N. Abdullah, F.M. Ghazali and Y. Shirai, 2008. Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J. Biosci. Bioeng., 106(3): 231-236.
    CrossRef    PMid:18929997    Direct Link
  4. Au, K.S. and K.Y. Chan, 1987. Purification and properties of the endo-1,4-ß-glucanase from Bacillus subtilis. J. Gen. Microbiol., 133(8): 2155-2162.
    CrossRef    
  5. Bailey, M.J., P. Biely and K. Poutanen, 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol., 23(3): 257-270.
    CrossRef    
  6. Bakare, M.K., I.O. Adewale, A. Ajayi and O.O. Shonukan, 2005. Purification and characterization of cellulase from the wild-type and two improved mutants of Pseudomonas fluorescens. Afr. J. Biotechnol., 4(9): 898-904.
    Direct Link
  7. Bhat, M.K., 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv., 18(5): 355-383.
    CrossRef    Direct Link
  8. Bijende, Bajaj, B.K., H. Pangotra, M.A. Wani, P. Sharma and A. Sharma, 2009. Partial purification and characterization of a highly thermostable and pH stable endoglucanase from a newly isolated Bacillus strain M-9. Indian J. Chem. Techn., 16: 382-387.
  9. Bischoff, K.M., S. Liu and S.R. Hughes, 2007. Cloning and characterization of a recombinant family 5 endoglucanase from Bacillus licheniformis strain B-41361. Process Biochem., 42(7): 1150-1154.
    CrossRef    Direct Link
  10. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1-2): 248-254.
    CrossRef    PMid:942051    
  11. Cavaco-Paulo, A., 1998. Mechanism of cellulase action in textile processes. Carbohyd. Polym., 37(3): 273-277.
  12. Chandra, M.S., B. Viswanath and B.R. Reddy, 2007. Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus Niger. Indian J. Microbiol., 47(4): 323-328.
    CrossRef    PMid:23100685 PMCid:PMC3450032    Direct Link
  13. Cherry, J.R. and A.L. Fidantsef, 2003. Directed evolution of industrial enzymes: An update. Curr. Opin. Biotech., 14(4): 438-443.
    CrossRef    
  14. Christakopoulos, P., D.G. Hatzinikolau, G. Fountoukidis, D. Kekos, M. Claeyssens and B.J. Macris, 1999. Purification and mode of action of an alkali-resistant endo-1, 4-beta-glucanase from Bacillus pumilus. Arch. Biochem. Biophys., 364(1): 61-66.
    CrossRef    PMid:10087165    Direct Link
  15. Das, A., S. Bhattacharya and L. Murali, 2010. Production of cellulase from a thermophilic Bacillus sp. isolated from cow dung. Am.-Eurasian J. Agric. Environ. Sci., 8(6): 685-691.
  16. Dutta, T., R. Sahoo, R. Sengupta, S.S. Ray, A. Bhattacharjee and S. Ghosh, 2008. Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: Production and characterization. J. Ind. Microbiol. Biot., 35(4): 275-282.
    CrossRef    PMid:18210175    Direct Link
  17. Gao, J., H. Weng, D. Zhu, M. Yuan, F. Guan and Y. Xi, 2008. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresource Technol., 99(16): 7623-7629.
    CrossRef    PMid:18346891    Direct Link
  18. Gautam, S.P., P.S. Bundela, A.K. Pandey, Jamaluddin, M.K. Awasthi and S. Sarsaiya, 2010. Optimization of the medium for the production of cellulase by the Trichoderma viride using submerged fermentation. Int. J. Environ. Sci., 1(4): 656-665.
  19. Heck, J.X., P.F. Hertz and M.A.Z. Ayub, 2002. Cellulase and xylanase productions by isolated Amazon Bacillus strains using soybean industrial residue based solid-state cultivation. Braz. J. Microbiol., 33(3): 213-218.
    CrossRef    Direct Link
  20. Immanuel, G., R. Dhanusha, P. Prema and A. Palavesam, 2006. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int. J. Environ. Sci. Technol., 3(1): 25-34.
    CrossRef    Direct Link
  21. Immanuel, G., C. Bhagavath, P. Iyappa Raj, P. Esakkiraj and A. Palavesam, 2007. Production and partial purification of cellulase by Aspergillus niger and A. Fumigatus fermented in coir waste and sawdust. Int. J. Microbiol., 3(1).
    Direct Link
  22. Kannan, N., 2003. Handbook of Laboratory Culture Media, Reagents, Stains and Buffers. Panima Publishing Corporation, New Delhi.
  23. Kapoor, N., M. Tyagi, H. Kumar, A. Arya, M.A. Siddiqui, A. Amir and A.S. Malik, 2010. Production of cellulase enzyme by Chaetomium sp. using wheat straw in solid state fermentation. Res. J. Microbiol., 5(12): 1199-1206.
  24. Kato, S., S. Haruta, Z.J. Cui, M. Ishii, A. Yokota and Y. Igarashi, 2004. Clostridium straminisolvens sp. Nov., A moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int. J. Syst. Evol. Micr., 54(Pt 6): 2043-2047.
  25. Kaur, G. and T. Satyanarayana, 2004. Production of extracellular pectinolytic, cellulolytic and xylanoytic enzymes by thermophilic mould sporotrichum thermophile Apinis in solid state fermentation. Indian J. Biotechnol., 3(4): 552-557.
    Direct Link
  26. Kaur, J., B.S. Chadha, B.A. Kumar and H.S. Saini, 2007. Purification and characterization of two endoglucanases from Melanocarpus sp. MTCC 3922. Bioresource Technol., 98(1): 74-81.
    CrossRef    PMid:16406512    Direct Link
  27. Khan, F.A.B.A. and A.A.S.A. Husaini, 2006. Enhancing a-amylase and cellulase in vivo enzyme expression on sago pith residue using Bacillus amyloliquefaciens UMAS 1002. Biotechnology, 5(3): 391-403.
    CrossRef    
  28. Lakshmikant, Kamal and S.N. Mathur, 1990. Cellulolytic activities of Chaetomium globosum on different cellulosic substrates. World. J. Microb. Biot., 6(1): 23-26.
    CrossRef    PMid:24429885    Direct Link
  29. Lee, J., 1997. Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol., 56(1): 1-24.
    CrossRef    Direct Link
  30. Lusterio, D.D., F.G. Suizo, N.M. Labunos, M.N. Valledor, S. Veda, S. Kawai, K. Koike, S. Shikata, T. Yoshimatsu and S. Ito, 1992. Alkali-resistant, alkaline endo-l,4-ß-glucanase produced by Bacillus sp. PKM-5430. Biosci. Biotech. Bioch., 56(10): 1671-1672.
  31. Lynd, L.R., P.J. Weimer and I.S. Pretorius, 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. R., 66(3): 506-577.
    CrossRef    PMid:12209002    
  32. Mawadza, C., F.C. Boogerd, R. Zvauya and H.W. Verseveld, 1996. Influence of environmental factors on endo-beta-1,4-glucanase production by Bacillus HR68, isolated from a Zimbabwean hot spring. Anton. Leeuw., 69(4): 363-369.
  33. Crispen, M., H.K. Rajni, Z. Remigio and M. Bo, 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol., 83(3): 177-187.
    CrossRef    
  34. Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31(3): 426-428.
    CrossRef    
  35. Nizamudeen, S. and B.K. Bajaj, 2009. A novel thermo-alkalitolerant endoglucanase production using cost-effective agricultural residues as substrates by a newly isolated Bacillus sp. NZ. Food Technol. Biotech., 47(4): 435-440.
    Direct Link
  36. Odeniyi, O.A., A.A. Onilude and M.A. Ayodele, 2009. Production characteristics and properties of cellulase/ polygalacturonase by a Bacillus coagulans strain from a fermenting palm-fruit industrial residue. Afr. J. Microbiol. Res., 3(8): 407-417.
    Direct Link
  37. Ohmiya, K., K. Sakka, S. Karita and T. Kimura, 1997. Structure of cellulases and their applications. Biotechnol. Genet. Eng., 14(1): 365-414.
  38. Okoshi, H., K. Ozaki, S. Shikata, K. Oshino, S. Kawai and S. Ito, 1990. Purification and characterization of multiple carboxymethyl cellulases from Bacillus sp. KSM-522. Agr. Biol. Chem. Tokyo, 54(1): 83-89.
  39. Rajoka, M.I., 2004. Influence of various fermentation variables on exo-glucanase production in Cellulomonas flavigena. Electron. J. Biotechn., 7(3): 256-263.
    CrossRef    Direct Link
  40. Schallmey, M., A. Singh and O.P. Ward, 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol., 50(1): 1-17.
    CrossRef    PMid:15052317    
  41. Shabeb, M.S.A., M.A.M. Younis, F.F. Hezayen and M.A. Nour-Eldein, 2010. Production of cellulase in low-cost medium by Bacillus subtilis KO strain. World Appl. Sci. J., 8(1): 35-42.
    Direct Link
  42. Singh, J., N. Batra and R.C. Sobti, 2004. Purification and characterisation of alkaline cellulase produced by a novel isolate, Bacillus sphaericus JS1. J. Ind. Microbiol. Biot., 31(2): 51-56.
    CrossRef    PMid:14758556    Direct Link
  43. Tolan, J.S. and B. Foody, 1999. Cellulase from Submerged Fermentation. In: Tsao, G.T., A.P. Brainard, H.R. Bungay et al. (Eds.), Recent Progress in Bioconversion of Lignocellulosics. Advances in Biochemical Engineering/Biotechnology, Springer, Berlin, Heidelberg, 65: 41-67.
    CrossRef    Direct Link
  44. Wang, C.Y., Y.R. Hsieh, C.C. Ng, H. Chan, H.T. Lin, W.S. Tzeng and Y.T. Shyu, 2009. Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05. Enzyme Microb. Tech., 44(6-7): 373-379.
  45. Yoshimatsu, T., K. Ozaki, S. Shikata, Y. I. Ohta, K. Koike, S. Kawai and S. Ito, 1990. Purification and characterization of alkaline endo-1,4-b -glucanases from alkalophilic Bacillus sp. KSM-635. J. Gen. Microbiol., 136: 1973-1979.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved