Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Adaboost Ensemble Classifiers for Corporate Default Prediction

1Suresh Ramakrishnan, 1Maryam Mirzaei and 2Mahmoud Bekri
1Department of Management, Universiti Teknologi Malaysia, Malaysia
2Economic and Statistic Institute, Karlsruhe Institute of Technology, Germany
Research Journal of Applied Sciences, Engineering and Technology  2015  3:224-230
http://dx.doi.org/10.19026/rjaset.9.1398  |  © The Author(s) 2015
Received: October ‎05, 2014  |  Accepted: November ‎10, ‎2014  |  Published: January 25, 2015

Abstract

This study aims to show a substitute technique to corporate default prediction. Data mining techniques have been extensively applied for this task, due to its ability to notice non-linear relationships and show a good performance in presence of noisy information, as it usually happens in corporate default prediction problems. In spite of several progressive methods that have widely been proposed, this area of research is not out dated and still needs further examination. In this study, the performance of multiple classifier systems is assessed in terms of their capability to appropriately classify default and non-default Malaysian firms listed in Bursa Malaysia. Multi-stage combination classifiers provided significant improvements over the single classifiers. In addition, Adaboost shows improvement in performance over the single classifiers.

Keywords:

Data Mining, default prediction , ensemble classifier,


References

  1. Abellán, J. and A. Masegosa, 2012. Bagging schemes on the presence of noise in classification. Exp. Syst. Appl., 39(8): 6827-6837.
    CrossRef    
  2. Allison, P.D., 2001. Logistic Regression Using the SAS System: Theory and Application. SAS Publishing, BBU Press, Cary, NC.
  3. Altman, E.I., 1968. Financial ratios, discriminant analaysis and the prediction of corporate bankruptcy. J. Financ., 23(4): 589-609.
    CrossRef    
  4. Altman, E.I., 1973. Predicting railroad bankruptcies in America. Bell J. Econ. Manage. Sci., 4(1): 184-211.
    CrossRef    
  5. Atiya, A., 2001. Bankruptcy prediction for credit risk using neural networks: A survey and new results. IEEE T. Neural Networ., 12: 929-935.
    CrossRef    PMid:18249923    
  6. Beaver, W.H., 1966. Financial ratios as predictors of failure. J. Accounting Res., 4(3): 71-111.
    CrossRef    
  7. Brown, G., J.L. Wyatt, R. Harris and X. Yao, 2005. Diversity creation methods: A survey and categorization. Inform. Fusion, 6(1): 5-20.
    CrossRef    
  8. Carter, C. and J. Catlett, 1987. Assessing credit card applications using machine learning. IEEE Expert, 2: 71-79.
    CrossRef    
  9. Dimitras, A.I., S.H. Zanakis and C. Zopounidis, 1996. A survey ofbusiness failure with anemphasis on prediction methods and industrialapplication. Eur. J. Oper. Res., 90: 487-513.
    CrossRef    
  10. Freund, Y. and R.E. Schapire, 1997. A Decision-theoretic generalisation of on-line learning and an applicationto boosting. J. Comput. Syst. Sci., 55(1): 119-139.
    CrossRef    
  11. Frydman, H., E. Altman and D. Kao, 1985. Introducing recursive partitioning for financial classification: The case of financial distress. J. Financ., 40(1): 269-291.
    CrossRef    
  12. Gepp, A., K. Kumar and S. Bhattacharya, 2010. Business failure prediction using decision trees. J. Forecasting, 29(6): 536-555.
    CrossRef    
  13. Gestel, T.V., B. Baesens, P.V. Dijcke, J. Suykens, J. Garcia and T. Alderweireld, 2005. Linear and nonlinear credit scoring by combining logistic regression and support vector machines. J. Credit Risk, 1(4): 31-60.
    CrossRef    
  14. Härdle, W., M.A. Rouslan and D. Schäfer, 2005. Predicting Bankruptcy with Support Vector Machines. SFB 649 Discussion Paper 2005-009, pp: 225-248.
  15. Hertz, J., A. Krogh and R.G. Palmer, 1991. The Theory of Neural Network Computation. Addison Welsey, Redwood, CA.
  16. Hosmer, D.W. and S. Lemeshow, 2000. Applied Logistic Regression. Wiley, New York.
    CrossRef    PMid:10886529    
  17. Lin, F. and S. McClean, 2001. A data mining approach to the prediction of corporate failure. Knowl-Based Sys., 14(3-4): 189-195.
    CrossRef    
  18. Lin, Y., 2002. Improvement on behavioural scores by dual-model scoring system. Int. J. Inf. Tech. Decis., 1: 153-165.
    CrossRef    
  19. Martin, D., 1977. Early warnings of bank failure: A logit regression approach. J. Bank. Financ., 1: 249-276.
    CrossRef    
  20. Messier Jr., W. and J. Hansen, 1988. Inducing rules for expert system development: An example using default and bankruptcy data. Manage. Sci., 34: 1403-1415.
    CrossRef    
  21. Morris, R., 1997. Early Warning Indicators of Corporate Failure: A Critical Review of Previous Research and Further Mpirical Evidence. Ashgate Publishing, Brookfield.
  22. Myers, J.H. and E.W. Forgy, 1963. The development of numerical credit evaluation systems. J. Am. Stat. Assoc., 58(303): 799-806.
    CrossRef    
  23. Ohlson, J.A., 1980. Financial ratios and the probabilistic prediction of bankruptcy. J. Account. Res., 18(1).
    CrossRef    
  24. Polikar, R., 2006. Ensemble based systems in decision making, IEEE Circuits Syst. Mag., 6(3): 21-45.
    CrossRef    
  25. Pompe, P. and A. Feelders, 1997. Using machine learning, neural networks and statistics to predict corporate bankruptcy. Microcomput. Civil Eng., 12: 267-276.
    CrossRef    
  26. Quinlan, J.R., 1986. Induction of decision trees. Mach. Learn., 1: 81-106.
    CrossRef    
  27. Rokach, L., 2010. Ensemble methods in supervised learning. In: Maimon, O. and L. Rokach (Eds.), Data Mining Knowledge Discovery Handbook, 2nd Edn., Springer Science+Business Media, pp: 959-979.
    PMid:20187905    
  28. Shin, K.S. and Y.J. Lee, 2002. A genetic algorithm application in bankruptcy prediction modeling. Expert Syst. Appl., 9: 503-512.
    CrossRef    
  29. Shin, K.S., T.S. Lee and H.J. Kim, 2005. An application of support vector machines in bankruptcy prediction model. Expert Syst. Appl., 28(1), 127-135.
    CrossRef    
  30. Smith, C.W. and R.M. Stulz, 1985. The determinants of firms’ hedging policies. J. Financ. Quant. Anal., 20(4): 391-405.
  31. Smith, R. and A. Winakor, 1935. Changes in Financial Structure of Unsuccessful Industrial Corporations. Bureau of business research. Bulletin Urbna University of Illinois Press, pp: 51.
    CrossRef    
  32. West, D., S. Dellana and J. Qian, 2005. Neural network ensemble strategies for financial decision applications. Comput. Oper. Res., 32: 2543-2559.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved