Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Linearized Shallow-water Wave Theory of Tsunami Generation and Propagation by Three-dimensional Stochastic Seismic Bottom Topography

M.A. Omar, Khaled T. Ramadan and Allam. A. Allam
Department of Basic and Applied Science, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, P.O. Box 1029, Abu Quir Campus, Alexandria, Egypt
Research Journal of Applied Sciences, Engineering and Technology  2014  19:4035-4055
http://dx.doi.org/10.19026/rjaset.7.765  |  © The Author(s) 2014
Received: November 20, 2013  |  Accepted: December 29, 2013  |  Published: May 15, 2014

Abstract

Tsunami generation and propagation resulting from lateral spreading of a stochastic seismic fault source model driven by two Gaussian white noises in the x- and y- directions are investigated. Tsunami waveforms within the frame of the linearized shallow water theory for constant water depth are analyzed analytically by transform methods (Laplace in time and Fourier in space) for the random sea floor uplift represented by a sliding Heaviside step function under the influence of two Gaussian white noise processes in the x- and y- directions. This model is used to study the tsunami amplitude amplification under the effect of the noise intensity and rise times of the stochastic fault source model. The amplification of tsunami amplitudes builds up progressively as time increases during the generation process due to wave focusing while the maximum wave amplitude decreases with time during the propagation process due to the geometric spreading and also due to dispersion. We derived and analyzed the mean and variance of the random tsunami waves as a function of the time evolution along the generation and propagation path.

Keywords:

Bottom topography, Gaussian white noise, Ito integral, Laplace and Fourier transforms, shallow water theory, stochastic process, tsunami modeling,


References

  1. Abou-Dina, M.S. and F.M. Hassan, 2006. Generation and propagation of nonlinear tsunamis in shallow water by a moving topography. Appl. Math. Comput., 177: 785-806.
    CrossRef    
  2. Craig, W., P. Guyenne and C. Sulem, 2009. Water waves over a random bottom. J. Fluid Mech., 640: 79-107.
    CrossRef    
  3. De Bouard, A., W. Craig, O. DDíaz-Espinosa, P. Guyenne and C. Sulem, 2008. Long wave expansions for water waves over random topography. Nonlinearity, 21(9): 2143.
    CrossRef    
  4. Dutykh, D. and F. Dias, 2007. Water waves generated by a moving bottom. Tsunami Nonlinear Waves, pp: 65-95.
    CrossRef    
  5. Dutykh, D., F. Dias and Y. Kervella, 2006. Linear theory of wave generation by a moving bottom. C. R. Math., 343: 499-504.
    CrossRef    
  6. Dutykh, D., C. Labart and D. Mitsotakis, 2011. Long wave runup on random beaches. Phys. Rev. Lett., 107(2011): 184504.
    CrossRef    PMid:22107636    
  7. Geist, E.L., 2002. Complex earthquake rupture and local tsunamis. J. Geophys. Res., 107: 2086-2100.
    CrossRef    
  8. Geist, E.L., 2005. Rapid tsunami models and earthquake source parameters: Far-field and local applications. ISET J. Earthquake Technol., 42(4): 127-136.
  9. Gurevich, B., A. Jeffrey and E. Pelinovsky, 1993. A method for obtaining evolution equations for nonlinear waves in a random medium. Wave Motion, 17(5): 287-295.
    CrossRef    
  10. Hammack, J.L., 1973. A note on tsunamis: Their generation and propagation in an ocean of uniform depth. J. Fluid Mech., 60: 769-799.
    CrossRef    
  11. Hassan, F.M., 2009. Boundary integral method applied to the propagation of non-linear gravity waves generated by a moving bottom. Appl. Math. Model., 33: 451-466.
    CrossRef    
  12. Hassan, H.S., K.T. Ramadan and S.N. Hanna, 2010a. Generation and propagation of tsunami by a moving realistic curvilinear slide shape with variable velocities in linear zed shallow-water wave theory. Engineering, 2(7): 529-549.
    CrossRef    
  13. Hassan, H.S., K.T. Ramadan and S.N. Hanna, 2010b. Numerical solution of the rotating shallow water flows with topography using the fractional steps method. Appl. Math., 1(2): 104-117.
    CrossRef    
  14. Hayir, A., 2003. The effects of variable speeds of a submarine block slide on near-field tsunami amplitudes. Ocean Eng., 30(18): 2329-2342.
    CrossRef    
  15. Kanamori, H. and G.S. Stewart, 1972. A slowly earthquake. Phys. Earth Planet. In., 18: 167-175.
    CrossRef    
  16. Kervella, Y., D. Dutykh and F. Dias, 2007. Comparison between three-dimensional linear and nonlinear tsunami generation models. Theor. Comp. Fluid Dyn., 21: 245-269.
    CrossRef    
  17. Klebaner, F.C., 2005. Introduction to Stochastic Calculus with Application. 2nd Edn., Imperial College Press, London.
    CrossRef    
  18. Kloeden, P.E. and E. Platen, 1992. Numerical Solution of Stochastic Differential Equations. Springer, Berlin.
    CrossRef    
  19. Manouzi, H. and M. Seaïd, 2009. Solving wick-stochastic water waves using a galerkin finite element method. Math. Comput. Simulat., 79: 3523-3533.
    CrossRef    
  20. Nachbin, A., 2010. Discrete and continuous random water wave dynamics. Discrete Cont. Dyn. S. (DCDS-A), 28(4): 1603-1633.
  21. Nakamura, S., 1986. Estimate of exceedance probability of tsunami occurrence in the eastern pacific. Mar. Geod., 10(2): 195-209.
    CrossRef    
  22. Oksendal, B., 1995. Stochastic Differential Equations: An Introduction with Applications. 5th Edn., Springer, Berlin.
    CrossRef    
  23. Omar, M. A., A. Aboul-Hassan and S.I. Rabia, 2009. The composite Milstein methods for the numerical solution of Stratonovich stochastic differential equations. Appl. Math. Comput., 215(2): 727-745.
    CrossRef    
  24. Omar, M.A., A. Aboul-Hassan and S.I. Rabia, 2011. The composite Milstein methods for the numerical solution of Itô stochastic differential equations. J. Comput. Appl. Math., 235(8): 2277-2299.
    CrossRef    
  25. Ramadan, K.T., H.S. Hassan and S.N. Hanna, 2011. Modeling of tsunami generation and propagation by a spreading curvilinear seismic faulting in linearized shallow-water wave theory. Appl. Math. Model., 35(1): 61-79.
    CrossRef    
  26. Ramadan, K.T., M.A. Omar and A.A. Allam, 2014. Modeling of tsunami generation and propagation under the effect of stochastic submarine landslides and slumps spreading in two orthogonal directions. Ocean Eng., 75: 90-11.
    CrossRef    
  27. Rascón, O.A. and A.G. Villarreal, 1975. On a stochastic model to estimate tsunami risk. J. Hydraul. Res., 13(4): 383-403.
    CrossRef    
  28. Silver, P.G. and T.H. Jordan, 1983. Total-moment spectra of fourteen large earthquakes. J. Geophys. Res., 88: 3273-3293.
    CrossRef    
  29. Titov, V. V. and C. Synolakis, 1995. Modeling of breaking and nonbreaking long-wave evolution and runup using vtcs-2. J. Waterw. Port C-ASCE, 121(6): 308-317.
    CrossRef    
  30. Todorovska, M.I. and M.D. Trifunac, 2001. Generation of tsunamis by a slowly spreading uplift of the sea floor. Soil Dyn. Earthq. Eng., 21: 151-167.
    CrossRef    
  31. Todorovska, M.I., A. Hayir and M.D. Trifunac, 2002. A note on tsunami amplitudes above submarine slides and slumps. Soil Dyn. Earthq. Eng., 22(2): 129-141.
    CrossRef    
  32. Trifunac, M.D. and M.I. Todorovska, 2002. A note on differences in tsunami source parameters for submarine slides and earthquakes. Soil Dyn. Earthq. Eng., 22(2): 143-155.
    CrossRef    
  33. Trifunac, M.D., A. Hayir and M.I. Todorovska, 2002a. A note on the effects of nonuniform spreading velocity of submarine slumps and slides on the near-field tsunami amplitudes. Soil Dyn. Earthq. Eng., 22(3): 167-180.
    CrossRef    
  34. Trifunac, M.D., A. Hayir and M.I. Todorovska, 2002b. Was grand banks event of 1929 a slump spreading in two directions. Soil Dyn. Earthq. Eng., 22(5): 349- 360.
    CrossRef    
  35. Wiegel, R.L., 1970. Earthquake Engineering. Prentice-Hall, Englewood Cliffs, New Jersey.
  36. Zahibo, N., E. Pelinovsky, T. Talipova, A. Kozelkov and A. Kurkin, 2006. Analytical and numerical study of nonlinear effects at tsunami modeling. Appl. Math. Comput., 174(2): 795-809.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved