Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


One-dimensional Microstructure Tungsten Gratings for Thermo Photovoltaic Applications

1, 3Samah. G. Babiker, 1Shuai Yong, 2Mohamed Osman Sid-Ahmed and 1Xie Ming
1Department of Engineering Thermo Physics-School of Energy Science and Engineering, Harbin Institute of Technology, Box. 456, 92 West DaZhi Street, NanGang District, Harbin City, Zip Code: 150001, P.R. China
2Sudan University of Science and Technology, Sudan
3University of the Holy Quran and Islamic Sciences, Sudan
Research Journal of Applied Sciences, Engineering and Technology  2014  11:2271-2277
http://dx.doi.org/10.19026/rjaset.7.526  |  © The Author(s) 2014
Received: July 9, 2013  |  Accepted: August 03, 2013  |  Published: March 20, 2014

Abstract

In this study, a one-dimensional microstructure tungsten grating is optimized for potential application as Thermo Photovoltaic (TPV) emitter. The influence of gratings geometric parameters on the spectral emittance are studied by using the Rigorous Coupled-Wave Analysis (RCWA). The results show that the spectral emittance is affected by the gratings geometrical parameters and insensitive to the direction. The optimum parameters of the proposed structure are grating period 1.4 μm, a filling ratio 0.8 and grating height 0.2 μm. A broad peak of high emittance is obtained at wavelengths between 0.5 and 1.8 μm. A peak emittance close to unity at wavelengths between 0.5 and 2 μm is achieved and it drops below 0.2 at wavelengths above 2 μm. This can be explained by the surface plasmon polaritons excitation coupled with the grating microstructures. At longer wavelengths, the emittance remains low and this is highly desired for thermo photovoltaic applications to reduce the thermal leakage due to low-energy photons that do not produce any photocurrent. The proposed structure can be used as a selective emitter for TPV applications.

Keywords:

Emittance, grating, Rigorous Coupled-Wave Analysis (RCWA), selective emitter, surface plasmon polaritons, thermo photovoltaic,


References

  1. Basu, S., Y.B. Chen and Z.M. Zhan, 2007. Microscale radiation in thermo photovoltaic devices: A review. Int. J. Energ. Res., 31: 689-716.
    CrossRef    
  2. Bett, A.W. and O.V. Sulima, 2003. Gasb photovoltaic cells for applications in TPV generators. Semicond. Sci. Technol., 18: S184-S190.
    CrossRef    
  3. Boueke, A., R. Kuhn, P. Fath, G. Willeke and E. Bucher, 2001. Latest results on semitransparent POWER silicon solar cells. Sol. Energ. Mat. Sol. C., 65(1): 549-553.
    CrossRef    
  4. Chen, Y.B., 2007. Rigorous modeling of the radiative properties of micro/nanostructures and comparisons with measurements of fabricated gratings slit arrays. Ph.D. Thesis, Georgia Institute of Technology, USA.
  5. Chen, Y.B. and Z.M. Zhang, 2007. Design of tungsten complex gratings for thermo photovoltaic radiators. J. Opt. Commun., 269: 411-417.
    CrossRef    
  6. Chia, L.C. and B. Feng, 2007. The development of a micropower (micro-thermo photovoltaic) device (Review). J. Power Sources, 165(1): 455-480.
    CrossRef    
  7. Coutts, J.T., 1999. A review of progress in thermo photovoltaic generation of electricity. J. Ren. Sust. Energ. Rev., 3(2): 177-184.
  8. Coutts, J.T., G. Guazzoni and J. Luther, 2003. Thermo photovoltaic generation of electricity. Proceeding of 5th Conference on Thermo Photovoltaic Generation of Electricity. Rome, Italy.
  9. Diso, D., A. Licciulli, A. Bianco, M. Lomascolo, G. Leo, M. Mazzer, S. Tundo, G. Torsello and A. Maffezzoli, 2003. Erbium containing ceramic emitters for thermo photovoltaic energy conversion. J. Mat. Sci. Eng., B98: 144-149.
    CrossRef    
  10. Fu, C. and Z.M. Zhang, 2009. Thermal radiative properties of metamaterials and other nanostructured materials: A review. J. Front. Energy Power Eng. China, 3(1): 11-26.
    CrossRef    
  11. Heinzel, A., V. Boerner, A. Gombert, B. Blasi, V. Wittwer and J. Luther, 2000. Radiation filters and emitters for the NIR based on periodically structured metal surfaces. J. Mod. Optic., 47(13): 2399-2419.
    CrossRef    
  12. Hesketh, P.J., J.N. Zemel and B. Gebhart, 1986. Organ pipe radiant modes of periodic micromachined silicon surface. Lett. Nature, 324: 549-551.
    CrossRef    
  13. Jovanovic, N.Z., 2005. Two-dimension photonic crystals as selective emitters for thermo photovoltaic power conversion applications. Ph.D. Thesis, Massachusetts Institute of Technology, USA.
  14. Lin, S.Y., J. Moreno and J.G. Fleming, 2003. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Appl. Phys. Lett., 83(2): 380-382.
    CrossRef    
  15. Lunch, D.W. and W.R. Hunter, 1998. Tungsten (W). In: E.D. Palik (Ed.), Handbook of Optical Constants of Solids, Vol. 1, San Diego, CA.
  16. Maruyama, S., T. Kashiwa, H. Yugami and M. Esashi, 2001. Thermal radiation from two-dimensionally confined modes in microcavities. Appl. Phys. Lett., 79: 1393.
    CrossRef    
  17. Moharam, M.G. and T.K. Gaylord, 1981. Rigrous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am., 71(7): 811-818.
    CrossRef    
  18. Mostafa, S.I., N.H. Rafat and S.A. El-Naggar, 2012. One-dimensional metallic-dielectric (Ag/SiO2) photonic crystals filter for thermophotovoltaic applications. Renew Energ., 45: 245-250.
    CrossRef    
  19. Nagpal, P., S.E. Han, A. Stein and D.J. Norris, 2008. Efficient low-temperature thermo photovoltaic emitters from metallic photonic crystals. Nano Lett., 8(10): 3238-3243.
    CrossRef    PMid:18781817    
  20. Narayanaswamy, A. and G. Chen, 2004. Thermal emission control with one-dimensional metallodielectric photonic crystals. J. Phys. Rev., B70(12): 125101.
    CrossRef    
  21. Nguyen-Huu, N., Y.B. Chen and Y.L. Lo, 2012. Development of a polarization-insensitive thermo photovoltaic emitter with a binary grating. J. Opt. Exp., 20(6): 5882-5890.
    CrossRef    PMid:22418465    
  22. Park, K., B.J. Lee, C. Fu and Z.M. Zhang, 2005. Study of thesurfaceand bulk polaritons with a negative index metamaterial. J. Opt. Soc. Am., B22(5): 1016-1023.
    CrossRef    
  23. Peng, S. and G.M. Morris, 1995. Efficient implementation ofrigorous coupled-wave analysis for surface-relief gratings. J. Opt. Soc. Am. A., 12(5): 1087-1096.
    CrossRef    
  24. Qiu, K. and A.C.S. Hayden, 2012. Development of a novel cascading TPV and TE power generation system. Appl. Energ., 91: 304-308.
    CrossRef    
  25. Raether, H., 1988. Surface Plasmons: On Smooth and Rough Surfaces and on Gratings. Springer, Berlin.
    CrossRef    
  26. Sai, H., H. Yugami, Y. Kanamori and K. Hane, 2003a. Spectrally selective thermal radiators and absorbers with periodic microstructured surface for high-temperature applications. Microscale Therm. Eng., 7(2): 101-115.
    CrossRef    
  27. Sai, H., Y. Kanamori and H. Yugami, 2003b. High-temperature resistive surface grating for spectral control of thermal radiation. Appl. Phys. Lett., 82(11): 1685-1687.
    CrossRef    
  28. Sai, H., T. Kamikawa, Y. Kanamori, K. Hane, H. Yugami and M. Yamaguchi, 2004. Thermo photovoltaic generation with microstructured tungsten selective emitters. Proceedings of the 6th Conference on Thermo Photovoltaic Generation of Electricity, pp: 206-214.
  29. Sai, H., Y. Kanamori, K. Hane and H. Yugami, 2005a. Numerical study on spectral properties of tungsten one dimensional surface-relief gratings for spectrally selective devices. J. Opt. Soc. Am., 22A(9): 1805-1813.
    CrossRef    
  30. Sai, H., Y. Kanamori and H. Yugami, 2005b. Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures. J. Micmech. Micro. Eng., 15(9): S243-S249.
    CrossRef    
  31. Sharma, K., H.S., Zaidi, C.P. Logofatu and J.R.S. Breuck, 2002. Optical and electrical properties of nanostructured metal-silicon-metal photodetectors. IEEE J. Quantum Elect., 38(12): 1651-1660.
    CrossRef    
  32. Wang, L.P. and Z.M. Zhang, 2012. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermo photovoltaics. Appl. Phys. Lett., 100: 063902.
    CrossRef    
  33. Whale, M.D., 2001. The influence of interference and heterojunctions on the performance of microscale thermo photovoltaic devices. Microscale Therm. Eng., 5: 89-106.
    CrossRef    
  34. Yang, W.M., S.K. Chou, C. Shu, Z.W. Li and H. Xue, 2003. Research on micro-thermophotovoltaic power generators. Sol. Energ. Mat. Sol. C., 80: 95-104.
    CrossRef    
  35. Zhang, C.Q., 2000. Recent progress in high-temperature solar selective coatings. Sol. Energ. Mat. Sol. C., 62(1-2): 63-74.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved