Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Rolling Bearing Failure Feature Extraction Based on Transform and Stochastic Resonance

Zengqing Ma, Yingna Yang and Jianhua Liang
School of Electrical and Electronics Engineering, Shijiazhuang Tiedao University, China
Research Journal of Applied Sciences, Engineering and Technology  2013  15:2812-2817
http://dx.doi.org/10.19026/rjaset.6.3790  |  © The Author(s) 2013
Received: January 19, 2013  |  Accepted: March 02, 2013  |  Published: August 20, 2013

Abstract

Based on the generate mechanism of rolling bearing fault signal and its modulation model in the process of spreading, an improved method that combining Hilbert transformation and Stochastic Resonance (SR) is proposed for rolling bearing fault features extraction. Subsequently, the method is used to extract fault signal features from three kinds of typical faults, the surface damage of the inner ring, outer ring stripping injury and roller electrical erosion. First, low frequency envelope components are acquired from rolling bearing vibration signals through Hilbert transformation. Then, depending on the advantage of SR that SR is immune to noise and sensitive to periodic signal, cyclical faults signal of the low frequency envelope is highlighted by using the variable step size solution that can overcome adiabatic condition limitation of SR system. The experimental results show that the algorithm can extract the fault feature and identify the fault type effectively.

Keywords:

Envelope detection, hilbert transform, rolling bearing, stochastic resonance,


References


Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved