Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Numerical Simulation of Temperature and Mixing Performances of Tri-screw Extruders with Non-isothermal Modeling

X.Z. Zhu, G. Wang and Y.D. He
Department of Mechanical Engineering, Liaoning Shihua University, Fushun Liaoning 113001, P.R. China
Research Journal of Applied Sciences, Engineering and Technology  2013  12:3393-3401
http://dx.doi.org/10.19026/rjaset.5.4585  |  © The Author(s) 2013
Received: September 17, 2012  |  Accepted: October 24, 2012  |  Published: April 10, 2013

Abstract

Tri-screw extruders are new extrusion equipments for food and polymer processing. Especially, there is one special circumfluence exists in center region only at cross section. In this study, the 2D transient and non-isothermal modeling of a tri-screw extruder is established by using Finite Element Method (FEM) with particle tracking technology to reduce the axial effects. The transient temperature and flow fields are calculated with a commercial code, Polyflow. Moreover, the effect of temperature rise due to viscous heating on the flow and mixing characteristics such as mixing index, segregation scale, mean and instantaneous time-averaged efficiency of mixing for the tri-screw extruder are carried out. The results show that in the special center region, the velocity and mixing index is small and viscosity and temperature are relatively big, indicating the poor mixing efficiency. When the heat transfers due to self-heating is considered, the dispersive mixing of the tri-screw extruder decreases, but the distributive mixing and stretching mixing efficiency all increase for the tri-screw extruder. In particular, the stretching effect of the fluid particles in the tri-screw extruder decreases due to the decrease of viscous dissipation when the non-isothermal model is employed.

Keywords:

FEM, , mixing efficiency, , non-isothermal model, tri-screw extruder, viscous dissipation,


References


Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved