Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Modelling of Rehydration of Freeze-dried Dumpling Wrapper

Wanren Chen, Hua Li, Xingli Jiao and Xuewei Cui
School of Chemical Engineering and Energy, Zhengzhou University, No.100 Science Road, Zhengzhou, Henan, 450001, China
Research Journal of Applied Sciences, Engineering and Technology  2016  5:556-561
http://dx.doi.org/10.19026/rjaset.12.2683  |  © The Author(s) 2016
Received: September ‎21, ‎2015  |  Accepted: October ‎30, ‎2015  |  Published: March 05, 2016

Abstract

It was aimed to assess the impact of rehydration process of freeze-dried dumpling wrapper on their property and rate of rehydration, it is necessary to study the temperature effect; therefore the rehydration kinetic of freeze-dried dumpling wrapper was investigated at temperature of 308, 343 and 373 K, respectively. Fick Diffusion theory, Peleg model and Weibull model were used to describe rehydration process. The results show that: the predictions with Peleg model and Weibull model are in good agreement with experimental data. The study on rehydration process will help understand rehydration characteristics and rehydration mechanism of dry foodstuff and provide theoretical guidance for the freeze-dried food.

Keywords:

Dumpling wrapper, Fick diffusion, mass transfer, peleg, rehydration, vacuum freeze-drying, Weibull,


References

  1. Abu-Ghannam, N. and B. McKenna, 1997. The application of Peleg’s equation to model water absorption during the soaking of red kidney beans (Phaseolus vulgaris L.). J. Food Eng., 32(4): 39l-401. http://www.sciencedirect.com/science/ article/pii/S0260877497000344.
    CrossRef    
  2. Crank, J., 1975. The Mathematics of Diffusion. Oxford University Press, London.
    Direct Link
  3. Crank, J. and G.S. Park, 1968. Diffusion in Polymers. Academic Press, London and New York. onlinelibrary.wiley.com/doi/10.1002/app.1970.070140623/abstract.
  4. Doymaz, I., 2004. Convective air drying characteristics of thin layer carrots. J. Food Eng., 61(3): 359-364. http://www.sciencedirect.com/science/article/pii/S0260877403001420.
    CrossRef    Direct Link
  5. García, P.P., N. Sanjuán, R. Melis and A. Mulet, 2006. Morchella Esculenta (morel) rehydration process modeling. J. Food Eng., 72(4): 346-353. http://www.sciencedirect.com/science/article/pii/S0260877405000178.
    CrossRef    Direct Link
  6. Hung, T.V., L.H. Liu, R.G. Black and M.A. Trewhella, 1993. Water absorption in chickpea (C. arietinum) and field pea (P. sativum) cultivars using the Peleg model. J. Food Sci., 58(4): 848-852. http://onlinelibrary.wiley.com/doi/ 10.1111/j.1365-2621.1993.tb09374.x/abstract.
    CrossRef    Direct Link
  7. Kaptso, K.G., Y.N. Njintang, A.E. Komnek, J. Hounhouigan, J. Scher and C.M.F. Mbofung, 2008. Physical properties and rehydration kinetics of two varieties of cowpea (Vigna unguiculata) and bambara groundnuts (Voandzeia subterranea) seeds. J. Food Eng., 86(1): 91-99. http://www. sciencedirect.com/science/article/pii/S026087740700489X.
    CrossRef    Direct Link
  8. Machado, M.F., F.A. Oliveira and L.M. Cunha, 1999. Effect of milk fat and total solids concentration on the kinetics of moisture uptake by ready-to-eat breakfast cereal. Int. J. Food Sci. Tech., 34(1): 47-57. http://onlinelibrary.wiley.com/doi/10.1046/ j.1365-2621.1999.00238.x/abstract.
    Direct Link
  9. Marabi, A., S. Livings, M. Jacobson and I.S. Saguy, 2003. Normalized Weibull distribution for modeling rehydration of food particulates. Eur. Food Res. Technol., 217(4): 311-318.
    CrossRef    
  10. Peleg, M., 1988. An empirical model for the description of moisture sorption curves. J. Food Sci., 53(4): 1216-1219. http://onlinelibrary.wiley.com/doi/ 10.1111/j.13652621.1988.tb13565.x/abstract.
    CrossRef    Direct Link
  11. Saguy, S., A. Marabi and R. Wallach, 2005. New approach to model rehydration of dry food particulates utilizing principles of liquid transport in porous media. Trends Food Sci. Technol., 16(11): 495-506. http://www.sciencedirect.com/ science/article/pii/S0924224405001627.
    CrossRef    Direct Link
  12. Sanjuán, N., J.A. Cárcel, G. Clemente and A. Mulet, 2001. Modelling of the rehydration process of brocolli florets. Eur. Food Res. Technol., 212(4): 449-453. http://link.springer.com/article/10.1007/ s002170000277#page-1.
    CrossRef    Direct Link
  13. Solomon, W.K., 2007. Hydration kinetics of lupin (Lupinus Albus) seeds. J. Food Process Eng., 30(1): 119-130. http://onlinelibrary.wiley.com/doi/ 10.1111/j.1745-4530. 2007.00098.x/abstract.
    Direct Link
  14. Sopade, P.A., E.S. Ajisegiri and M.H. Badau, 1992. The use of Peleg’s equation to model water absorption in some cereal grains during soaking. J. Food Eng., 15(4): 269-283. http://www. sciencedirect.com/science/article/pii/0260877492900104.
    CrossRef    Direct Link

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved