Home           Contact us           FAQs           
     Journal Home     |     Aim & Scope    |    Author(s) Information      |     Editorial Board     |     MSP Download Statistics
2013 (Vol. 6, Issue: 08)
Article Information:

The Research on Curling Track Empty Value Fill Algorithm Based on Similar Forecast

Zhao Peiyu and Li Shangbin
Corresponding Author:  Zhao Peiyu 

Key words:  Artificial Neural Network (ANN), Autonomous Hybrid Power System (AHPS), curling track, Static Var Compensator (SVC), , ,
Vol. 6 , (08): 1472-1478
Submitted Accepted Published
October 31, 2012 January 03, 2013 July 10, 2013

The sparsity problem could result in a data-dependent reduction and we couldn’t do rough set null value estimates, therefore, we need to deal with the problem of a sparse data set before performing the null value estimate and padded by introducing a collaborative filtering technology used the sparse data processing methods - project-based score prediction in the study. The method in the case of the object attribute data sparse, two objects can be based on their known attributes of computing the similarity between them, so a target object can be predicted based on the similarity between the size of the other objects to the N objects determine a neighbor collection of objects and then treat the predicted target unknown property by neighbors object contains attribute values to predict.
Abstract PDF HTML
  Cite this Reference:
Zhao Peiyu and Li Shangbin, 2013. The Research on Curling Track Empty Value Fill Algorithm Based on Similar Forecast.  Research Journal of Applied Sciences, Engineering and Technology, 6(08): 1472-1478.
    Advertise with us
ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Current Information
   Sales & Services
Home  |  Contact us  |  About us  |  Privacy Policy
Copyright © 2015. MAXWELL Scientific Publication Corp., All rights reserved