Home           Contact us           FAQs           
 
   Journal Page   |   Aims & Scope   |   Author Guideline   |   Editorial Board   |   Search
    Abstract
2013 (Vol. 5, Issue: 04)
Article Information:

Classification Based on Attribute Positive Correlation and Average Similarity of Nearest Neighbors

Zhongmei Zhou, Guiying Pan and Xuejun Wang
Corresponding Author:  Zhongmei Zhou 

Key words:  KNN, nearest neighbor, positive correlation, similarity measure, , ,
Vol. 5 , (04): 1420-1423
Submitted Accepted Published
July 12, 2012 August 15, 2012 February 01, 2013
Abstract:

The K-Nearest Neighbor algorithm (KNN) is a method for classifying objects based on the k closest training objects. An object is classified by a majority vote of its nearest neighbors. “Closeness” is defined in terms of the similarity measure between two objects. KNN is not only simple, but also sometimes has high accuracy. However, the quality of KNN classification result depends on the similarity measure between two objects and the selection of k. Moreover, the average similarity of the majority nearest neighbors may be less than the one of the minority nearest neighbors. To deal with these problems, in this study, we propose a new classification approach called APCAS: classification based on the attribute values which are positively correlated with one of the class labels and the average similarity of the nearest neighbors in each class. First, we define a new similarity measure based on the attribute values which are positively correlated with one of the class labels. Second, we classify a new object using the average similarity of the nearest neighbors in each class without selecting k. Experimental results on the mushroom data show that APCAS achieves high accuracy.
Abstract PDF HTML
  Cite this Reference:
Zhongmei Zhou, Guiying Pan and Xuejun Wang, 2013. Classification Based on Attribute Positive Correlation and Average Similarity of Nearest Neighbors .  Research Journal of Applied Sciences, Engineering and Technology, 5(04): 1420-1423.
    Advertise with us
 
ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Current Information
   Sales & Services
   Contact Information
  Executive Managing Editor
  Email: admin@maxwellsci.com
  Publishing Editor
  Email: support@maxwellsci.com
  Account Manager
  Email: faisalm@maxwellsci.com
  Journal Editor
  Email: admin@maxwellsci.com
  Press Department
  Email: press@maxwellsci.com
Home  |  Contact us  |  About us  |  Privacy Policy
Copyright © 2009. MAXWELL Science Publication, a division of MAXWELLl Scientific Organization. All rights reserved