Home           Contact us           FAQs           
 
   Journal Page   |   Aims & Scope   |   Author Guideline   |   Editorial Board   |   Search
    Abstract
2013 (Vol. 5, Issue: 01)
Article Information:

Mechanical Properties of Cold-Drawn Low Carbon Steel for Nail Manufacture: Experimental Observation

N.A. Raji and O.O. Oluwole
Corresponding Author:  N.A. Raji 

Key words:  Cold-drawing, hardness, tensile strength, tensile test, toughness, yield strength,
Vol. 5 , (01): 118-122
Submitted Accepted Published
April 10, 2012 April 30, 2012 January 01, 2013
Abstract:

The objective of this study is to investigate the influence of service situation on the mechanical properties of plain nails manufactured from low carbon steel. The influence of the degree of cold drawing on the mechanical properties and strain hardening of the material is investigated by tensile test experimentation. The stress-strain relationships of the cold-drawn low carbon steel were investigated over the 20, 25, 40 and 55% degree of drawn deformation for the manufacture of 4, 3, 2 and 2 inches nails, respectively. The true stress-strain curves were analyzed to obtain the yield strength and tensile strength of the cold drawn steel. It is shown that the yield strength, tensile strength, hardness and toughness of the low carbon steel reduce with increasing degree of cold-drawn deformation. The micrographs of the deformed samples obtained using optical microscope shows that the grain structure elongates in the direction of the drawing operation and misorientation of the grains set in at 40 and 55% degree of deformation. The difference in yield strength was attributed to the strain hardening, resulting from the different degrees of drawn deformation.
Abstract PDF HTML
  Cite this Reference:
N.A. Raji and O.O. Oluwole, 2013. Mechanical Properties of Cold-Drawn Low Carbon Steel for Nail Manufacture: Experimental Observation.  Research Journal of Applied Sciences, Engineering and Technology, 5(01): 118-122.
    Advertise with us
 
ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Current Information
   Sales & Services
   Contact Information
  Executive Managing Editor
  Email: admin@maxwellsci.com
  Publishing Editor
  Email: support@maxwellsci.com
  Account Manager
  Email: faisalm@maxwellsci.com
  Journal Editor
  Email: admin@maxwellsci.com
  Press Department
  Email: press@maxwellsci.com
Home  |  Contact us  |  About us  |  Privacy Policy
Copyright © 2009. MAXWELL Science Publication, a division of MAXWELLl Scientific Organization. All rights reserved